Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
J Ethnopharmacol ; 319(Pt 3): 117326, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37879504

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Atractylodis Rhizoma is extensively employed in Traditional Chinese Medicine for the treatment of skin and gastrointestinal ailments. Its active components have been proven to demonstrate numerous beneficial properties, including antibacterial, antiviral, anti-inflammatory, anti-tumor, and anti-ulcer activities. Furthermore, the volatile oil from Atractylodis Rhizoma (VOAR) has been reported to effectively inhibit and eradicate pathogens such as Staphylococcus aureus, Escherichia coli and Candida albicans. Of particular concern is Staphylococcus pseudintermedius, the predominant pathogen responsible for canine pyoderma, whose increasing antimicrobial resistance poses a serious public health threat. VOAR merits further investigation regarding its antibacterial potential against Staphylococcus pseudintermedius. AIM OF THE STUDY: The study aims to verify the in vitro antibacterial activity of VOAR against Staphylococcus pseudintermedius. And a superficial skin infection model in mice was established to assess the in vivo therapeutic effect of VOAR. MATERIALS AND METHODS: Thirty strains of S. pseudintermedius were isolated from dogs with pyoderma, and the drug resistance was analyzed by disc diffusion method. The Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of VOAR were determined through the broth dilution method. The growth curve of bacteria in a culture medium containing VOAR was monitored using a UV spectrophotometer. Scanning electron microscopy was employed to observe the effects of VOAR on the microstructure of S. pseudintermedius. The impact of VOAR on the antibiotic resistance of S. pseudintermedius was assessed using the disc diffusion method. Twenty mice were randomly divided into four groups: the control group, the physiological saline group, the VOAR group, and the amikacin group. With the exception of the control group, the skin barrier of mice was disrupted by tap stripping, and the mice were subsequently inoculated with S. pseudintermedius to establish a superficial skin infection model. The modeled mice were treated with normal saline, VOAR, and amikacin for 5 days. Following the treatment period, the therapeutic effect of each group was evaluated based on the measures of body weight, skin symptoms, tissue bacterial load, tissue IL-6 content, and histopathological changes. RESULTS: The MIC and MBC of VOAR against 30 clinical isolates of S. pseudintermedius were found to be 0.005425% and 0.016875%, respectively. VOAR could exhibit the ability to delay the entry of bacteria into the logarithmic growth phase, disrupt the bacterial structure, and enhance the antibacterial zone in conjunction with antibiotic drugs. In the superficial skin infection model mice, VOAR significantly reduced the scores for skin redness (P < 0.0001), scab formation (P < 0.0001), and wrinkles (P < 0.0001). Moreover, VOAR markedly reduced the bacterial load (P < 0.001) and IL-6 content (P < 0.0001) in the skin tissues of mice. Histopathological observations revealed that the full-layer skin structure in the VOAR group was more complete, with clearer skin layers, and showed significant improvement in inflammatory cell infiltration and fibroblast proliferation compared to other groups. CONCLUSION: The results demonstrate that VOAR effectively inhibits and eradicates Staphylococcus pseudintermedius in vitro while also enhancing the pathogen's sensitivity to antibiotics. Moreover, VOAR exhibits a pronounced therapeutic effect in the superficial skin infection model mice.


Subject(s)
Atractylodes , Methicillin-Resistant Staphylococcus aureus , Pyoderma , Dogs , Animals , Mice , Amikacin , Interleukin-6 , Pyoderma/drug therapy , Pyoderma/veterinary , Anti-Bacterial Agents/pharmacology
2.
Phytomedicine ; 109: 154595, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36610135

ABSTRACT

BACKGROUND: Increasing hepatic insulin signaling is found to be an important mechanism of Platycodon grandiflorus root to alleviate metabolic syndrome (MetS) symptoms such as insulin resistance, obesity, hyperlipidemia and hepatic steatosis, but the details are not yet clear. Since the main constituents of Platycodon grandiflorus root were hard to be absorbed by gastrointestinal tract, getting opportunity to interact with gut microbiota, we speculate the gut microorganisms may mediate its effect. PURPOSE: Our work aimed to confirm the critical role of gut microbes in the intervention of Platycodon grandiflorus root extract (PRE) on MetS, and investigate the mechanism. METHODS: Biochemical analyses, glucose tolerance test and hepatic lipidomics analysis were used to evaluate the anti-MetS effect of PRE on high fat diet (HFD) fed mice. Perform 16S rDNA analysis, qPCR analysis and in vitro co-incubation experiment to study its effect on gut microbes, followed by fecal microbiota transplantation (FMT) experiment and antibiotics intervention experiment. Also, the effect of Akkermansia muciniphila treatment on HFD mice was investigated. RESULTS: PRE alleviated lipid accumulation and insulin resistance in HFD mice and remodeled the fecal microbiome. It also increased the gene expression of colonic tight junction proteins, alleviated metabolic endotoxemia and inflammation, so that reduced TNF-α induced hepatic JNK-dependent IRS-1 serine phosphorylation and the impairment of PI3K/PIP3/Akt insulin signaling pathway. A. muciniphila was one of the most significantly enriched microbes by PRE treatment, and its administration to HFD mice showed similar effects to PRE, repairing the gut barrier and activating hepatic PI3K/PIP3/Akt pathway. Finally, anti-MetS effect of PRE could be delivered to FMT recipients, and PRE could not further attenuate MetS in gut microbiota depleted mice. CONCLUSION: We demonstrated for the first time that PRE alleviated MetS in a gut microbiota dependent manner, and found activation of hepatic insulin signaling mediated by gut A. muciniphila was a potential mechanism of it.


Subject(s)
Insulin Resistance , Metabolic Syndrome , Platycodon , Animals , Mice , Insulin/metabolism , Diet, High-Fat/adverse effects , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Plant Extracts/pharmacology , Signal Transduction , Mice, Inbred C57BL
3.
J Ethnopharmacol ; 301: 115773, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36191660

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Panacis Quinquefolii Radix (PQR) is often illegally sulfur fumigated to extend shelf life and improve appearance, but existing regulations of detecting SO2 residues do not accurately identify desulfurized sulfur-fumigated PQR (SF-PQR). Although sulfur-containing derivatives (SCDs) have been reported in some sulfur-fumigated herbs, there is a lack of research on the generation mechanisms and toxicity of SCDs. Our previous study reported the nephrotoxicity of SF-PQR, and there is an urgent necessity to illuminate the mechanism of toxicity as well as its association with SCDs. AIM OF THE STUDY: To investigate the transformation pattern of chemical components and SCDs in SF-PQR, and to disclose the linkage between SCDs and SF-PQR nephrotoxicity. MATERIALS AND METHODS: The extracts of PQR (before and after SF) were detected by the UPLC-LTQ-Orbitrap-MS method, and SCDs were screened as quality markers (Q-markers). The composition of sulfur combustion products was examined by ion chromatography to exploit the conversion mechanism of SCDs. After administration of PQR extracts to mice for two weeks, serum was collected for GC-MS-based untargeted metabolomics study to mine for differential metabolites. The upstream genes were traced by network analysis to probe toxicity targets. Molecular docking was used to uncover the interactions between SCDs and the targets. RESULTS: Thirty-three compounds were identified and 11 SCDs of saponins were screened, including four SO3 sulfonation products and five H2SO3 sulfonation products. Metabolomics study showed significant alterations in serum biochemistry of SF-PQR group, with substantial increases in fumarate and 2-heptanone content, and induced disturbances in glycerolipid metabolism and phenylalanine, tyrosine, and tryptophan biosynthesis in mice. Network analysis revealed that the key toxicity targets were DECR1, PLA2G1B, and CAT. Molecular docking indicated that SCDs had stable interaction forces with the above three toxicity targets. CONCLUSION: SF-PQR caused kidney damage by affecting glycerolipid metabolism and phenylalanine, tyrosine, and tryptophan biosynthesis. Eleven SCDs were potential nephrotoxic substances and Q-markers for identifying SF-PQR. This study is the first to systematically elucidate the mechanism of SF-PQR-related nephrotoxicity, providing a robust basis for the construction of new quality control standards and a global prohibition of sulfur fumigation.


Subject(s)
Drugs, Chinese Herbal , Tryptophan , Mice , Animals , Chromatography, High Pressure Liquid/methods , Molecular Docking Simulation , Fumigation , Sulfur/toxicity , Sulfur/chemistry , Metabolomics , Drugs, Chinese Herbal/chemistry , Tyrosine , Phenylalanine
4.
J Ethnopharmacol ; 298: 115637, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35970312

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Respiratory syncytial virus (RSV) is a common pathogen that causes lower respiratory tract disease in infants and the elderly, and no vaccination is presently available. Qingfei oral liquid (QF), a traditional Chinese medicine formula, has been shown in clinic to have anti-inflammatory properties. AIM OF THE STUDY: The present study investigated whether QF can suppress RSV-induced lung inflammation in mice models via fatty acid-dependent macrophage polarization. MATERIAL AND METHODS: BALB/c mice were given a low, medium, or high dose of QF intragastrically for four consecutive days following RSV infection. The lung inflammatory status was assessed using H&E staining and cytokine assays. The active components of QF and fatty acid metabolism were analyzed using ultra-high-performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS). A lipid metabolism-related pathway was found through network pharmacology and molecular docking investigations. Western blotting assays were used to determine the levels of ATP-citrate lyase (ACLY), peroxisome proliferation-activated receptor alpha (PPAR), Akt protein kinase B and its phosphorylated form in Akt signaling. Flow cytometry was used to quantify the number of macrophage subtypes (M1/M2), and immunohistochemistry was used to examine the expression of inducible nitric oxide synthase (iNOS) and arginase-1 (Arg-1). RESULTS: In the lung tissues of RSV-infected mice, QF suppressed the transcription of pro-inflammatory proteins such as interleukin-1 beta (IL-1ß), tumor necrosis factor alpha (TNF-α), and interleukin-6 (IL-6), while increasing the level of anti-inflammatory factors such as interleukin-10 (IL-10). The alterations in metabolic enzyme activity mediated by Akt signaling were linked to QF's significant reduction in lung fatty acid accumulation. Lower ACLY expression and higher PPAR expression were found after QF treatment, showing that these two enzymes were downstream targets of Akt signaling, controlling fatty acid synthesis (FAS) and fatty acid oxidation (FAO), respectively. The reprogramming of fatty acid metabolism resulted in the polarization of macrophages from M1 to M2, with lower expression of iNOS and higher expression of Arg-1. Additionally, application of an Akt agonist (SC-79) reduced QF's anti-inflammatory effects by increasing FAS and decreasing macrophage polarization. CONCLUSIONS: QF inhibited Akt-mediated FAS and polarized M1 to M2 macrophages, resulting in an anti-inflammatory impact.


Subject(s)
Pneumonia , Respiratory Syncytial Virus Infections , Animals , Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Chromatography, Liquid , Drugs, Chinese Herbal , Fatty Acids/metabolism , Inflammation/drug therapy , Interleukin-6/metabolism , Macrophages , Mice , Mice, Inbred BALB C , Molecular Docking Simulation , Peroxisome Proliferator-Activated Receptors/metabolism , Pneumonia/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Respiratory Syncytial Virus Infections/metabolism , Signal Transduction , Tandem Mass Spectrometry
5.
J Ethnopharmacol ; 287: 114952, 2022 Apr 06.
Article in English | MEDLINE | ID: mdl-34968661

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Tripterygium wilfordii Hook. f. (TW) is widely used to treat autoimmune and inflammatory diseases; however, its development and application is limited by its significant association with liver injury. The compound formula Qingluotongbi (QLT) employs TW as its main component and is used to treat rheumatoid arthritis with no adverse reactions, suggesting that QLT may reduce the liver toxicity of TW. AIM OF THE STUDY: We examined whether TW interferes with lipid metabolism to induce liver injury, and evaluated the protective effect of QLT in in vivo and in vitro experiments. MATERIALS AND METHODS: After administration of QLT and its ingredients, HepaRG cells and SD rats were tested for biochemical indicators, hepatocytes lipid changes, and rat liver pathological changes, and then we analyzed for the gene expression of liver X receptor α (LXRα), endoplasmic reticulum stress (ERS) key proteins, sterol regulatory element binding protein-1c (SREBP-1c), and lipid-synthesizing enzymes. In HepaRG cells, the protein expression of glucose-regulated protein 78 kDa (GRP78) and LXRα was detected after addition of an LXRα inhibitor, LXRα agonist, and ERS inhibitor. RESULTS: TW caused significant elevation of biochemical indicators and lipid droplet deposition in hepatocytes, as well as upregulated the gene expression of LXRα, ERS key proteins, SREBP-1c, and lipid-synthesizing enzymes in both in vitro and in vivo settings, and caused liver injury in rats. QLT can alleviate the lipotoxic liver injury caused by TW. LXRα agonist further activated ERS induced by TW, whereas LXRα inhibitor significantly reduced ERS and lipotoxic injury induced by TW in HepaRG cells. CONCLUSIONS: TW upregulated LXRα to activate ERS and increased the gene expression of SREBP-1c and lipid-synthesizing enzymes, leading to increased lipid synthesis in hepatocytes to result in liver injury. QLT inhibited the LXRα-ERS-SREBP-1c pathway and reduced abnormal lipid synthesis in hepatocytes and the hepatotoxicity of TW.


Subject(s)
Chemical and Drug Induced Liver Injury/prevention & control , Drugs, Chinese Herbal/pharmacology , Hepatocytes/drug effects , Tripterygium/toxicity , Animals , Cell Line , Chemical and Drug Induced Liver Injury/etiology , Endoplasmic Reticulum Stress/drug effects , Female , Gene Expression Regulation/drug effects , Hepatocytes/pathology , Humans , Lipid Metabolism/drug effects , Liver/drug effects , Liver/pathology , Liver X Receptors/genetics , Rats , Rats, Sprague-Dawley , Sterol Regulatory Element Binding Protein 1/genetics
6.
Anat Rec (Hoboken) ; 304(11): 2579-2591, 2021 11.
Article in English | MEDLINE | ID: mdl-34549900

ABSTRACT

Community-acquired pneumonia (CAP) is the leading cause of lower respiratory tract infections in children. Heat syndrome (HS) and cold syndrome (CS) are two main syndrome types of pediatric CAP in traditional Chinese medicine (TCM). This study aimed to identify plasma metabolic profiles in pediatric CAP and to further select potential biomarkers to distinguish between HS and CS. An ultra-performance liquid chromatography coupled with linear ion trap quadrupole-orbitrap mass spectrometry method was applied to plasma samples of 296 patients and 55 healthy controls (HC). The samples were divided into the discovery group (n = 213, HS = 160, CS = 23, HC = 30) and the validation group (n = 138, HS = 93, CS = 20, HC = 25). The orthogonal partial least-squares discriminant analysis, the value of fold change, and Kruskal-Wallis test with false discovery rate correction (q-value <0.05) were applied to identify differential plasma metabolites. The area under the ROC curve (AUC) was used to evaluate the diagnostic performance of the screened metabolites. The results showed that the plasma levels of aspartic acid, phenylalanine, arginine, lysoPC20:1, lysoPE16:0, lysoPE18:0, and PE (16:0_22:6) were increased in CS compared with HC. The plasma levels of PC (18:1_18:1), PC (20:4_20:4), PE (16:0_18:2), lysoPE20:4, lysoPE18:2, and lysoPE22:6 were decreased, whereas, the plasma level of ceramide (d18:1_24:1) was increased in HS compared with HC. There were 13 differential metabolites in CS (AUC = 0.995) and 15 differential metabolites in HS (AUC = 0.954), compared with HC. A panel of seven biomarkers, including LysoPC20:1, lysoPE16:0, lysoPE18:2, lysoPE20:4, lysoPE22:6, PC (18:1_18:1), and PC (20:4_20:4) showed good discrimination between HS and CS with an AUC of 0.982. Altered plasma amino acids and lipids may provide an objective basis for TCM syndrome differentiation in pediatric CAP.


Subject(s)
Medicine, Chinese Traditional , Pneumonia , Biomarkers , Child , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid/methods , Humans , Metabolome , Metabolomics/methods , Pneumonia/diagnosis
7.
Article in English | MEDLINE | ID: mdl-34280712

ABSTRACT

The complexity of ingredients in traditional Chinese medicine (TCM) makes it challenging to clarify its efficacy in an acceptable and scientific approach. The present study was aimed to use quantification results from targeted cellular metabolomics to evaluate anti-aging efficacy of a famous Chinese medicine formula, Erzhi Wan (EZW), and screen possible effective extracts, depending on the developed strategy integrating multivariate receiver operating characteristic (ROC) curve and analytic hierarchy process (AHP). In this study, senescent NRK cells induced by D-galactose were treated with drug-containing serum of EZW and four kinds of extracts (petroleum ether, ethyl acetate, butanol and water). Intermediates of two major metabolic pathways for energy synthesis, tricarboxylic acid (TCA) cycle and glycolysis, were accurately quantified by GC-MS/MS to identify discriminate metabolites for clarifying therapeutic mechanism of EZW based on multivariate statistical analysis. Senescent and non-senescent cells were successfully distinguished using these metabolites by ROC curve analysis. Next, these metabolites were used as evaluation indexes to quantitatively reflect different effect of EZW and its extracts, according to the role of them in distinguishing groups and in conjunction with AHP. In vitro detection of senescence-associated ß-galactosidase (SA-ß-gal) activity was used to verify the reliability of evaluation results. The reversal after treatment of drug-containing serum of EZW and extracts was observed, and the petroleum ether extract might be the potential active extract responsible for the major anti-aging effect of EZW, which was in agreement with in vitro experiments. Altogether, metabolomics was a powerful approach for evaluation efficacy and elucidation action mechanisms of TCM. The integrated evaluation strategy in this paper with properties of high practicality, feasibility and effectivity was expected to provide a new insight into comprehensive and quantitative efficacy evaluation.


Subject(s)
Aging , Drugs, Chinese Herbal , Metabolome/drug effects , Aging/drug effects , Aging/metabolism , Animals , Cell Line , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Metabolomics , Rats , Rats, Sprague-Dawley , Tandem Mass Spectrometry
8.
Front Pharmacol ; 12: 656756, 2021.
Article in English | MEDLINE | ID: mdl-33967801

ABSTRACT

Background: Asthma is a respiratory disease with chronic airway inflammatory, and individuals with asthma exacerbations is one of the most frequent causes of hospitalization. Huanglong antitussive granule (HL Granule), a Chinese proprietary herbal medicine, has been proved to be effective in the clinical treatment of pulmonary disease. This study is devoted to the pharmacodynamics of HL Granule in acute asthma and the possible mechanism from the perspective of lipidomics. Methods: Mice were divided into four groups, control group, acute asthma model group, HL Granule treatment and montelukast sodium treatment group. Acute asthma was induced by ovalbumin (OVA). Histopathology, pulmonary function and enzyme linked immunosorbent assay (ELISA) were used to validated model and effect of HL Granule. Lipids were detected by ultra-high-performance liquid chromatography coupled to hybrid Quadrupole-Exactive Orbitrap mass spectrometry (UHPLC-Q-Exactive Orbitrap MS) and identified by MS-DAIL and built-in Lipidblast database. Differentially expressed lipids recalled in HL Granule treatment group were extracted for heatmap, enrichment analysis and correlation analysis. Results: HL Granule was effective in decreasing airway hyperresponsiveness (AHR), airway inflammatory and the levels of IL-4 and IL-5. A total of 304 and 167 lipids were identified in positive and negative ion mode, respectively. Among these, 104 and 73 lipids were reserved in HL Granule group (FDR < 0.05), including acylcarnitine (ACar), fatty acid (FA), lysophosphatidylcholine (LPC), phosphatidylcholine (PC), lysophosphatidylethanolamine (LPE), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylinositol (PI), phosphatidylserine (PS), diglyceride (DG), triglyceride (TG), sphingomyelin (SM) and ceramide (Cer). Furthermore, 118 and 273 correlations among 47 and 96 lipids in the positive and negative were observed, with ether-linked phosphatidylethanolamine (PEe) and phosphatidylcholine (PCe) (FDR < 0.001, Spearman correlation coefficient r 2 > 0.75). Conclusion: HL Granule might improve pulmonary lipid homeostasis and could be used as an alternative or supplementary therapy in clinical for the treatment of asthma.

9.
Med Sci Monit ; 26: e920376, 2020 Feb 15.
Article in English | MEDLINE | ID: mdl-32061080

ABSTRACT

BACKGROUND The hepatotoxicity of Tripterygium wilfordii Hook. f. (TWHF) limits its clinic utilization. Qingluo Tongbi formula (QTF) was formulated based on a basic Chinese medicine theory. Previous studies have confirmed the safety and efficacy of QTF in treating rheumatoid arthritis. Therefore, we considered that TWHF could be detoxified based on its reasonable compatibility with QTF. We investigated the detoxicity mechanism of QTF in reducing the liver toxicity of TWHF. MATERIAL AND METHODS We used network pharmacology to determine the relevant metabolism targets of TWHF, focusing on the phase II metabolic enzymes uridine diphosphate-glucuronosyltransferase 1A1 (UGT1A1), UGT1A6, and UGT2B7. Based on the molecular mechanisms of these predictions and the results of the network analysis, we designed experiments to verify our hypothesis in vivo. We used western blotting, real-time quantitative polymerase chain reaction (RT-qPCR), double immunofluorescence, and laser confocal microscopy to detect the expression of UGTs. Finally, we used transmission electron microscopy to observe the endoplasmic reticulum structure. RESULTS The results confirmed that QTF reversed the TWHF-induced reduction of UGT content in liver microsomes, upregulated UGT1A1 and UGT1A6 but not UGT2B7 in the liver tissue. UGT2B7 expression in the liver and liver microsomes was inconsistent. QTF upregulated the expression of UGT2B7 in the endoplasmic reticulum, and QTF upregulated UGT2B7 expression levels in the endoplasmic reticulum compared with TWHF, which reduced liver toxicity. Structural changes were observed in the endoplasmic reticulum. CONCLUSIONS The Chinese traditional medicine compound QTF can achieve the effect of detoxification by upregulating the expression of UGT2B7 in the endoplasmic reticulum.


Subject(s)
Chemical and Drug Induced Liver Injury/prevention & control , Drugs, Chinese Herbal/pharmacology , Glucuronosyltransferase/metabolism , Liver/drug effects , Tripterygium/adverse effects , Animals , Arthritis, Rheumatoid/drug therapy , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/pathology , Disease Models, Animal , Drug Therapy, Combination/methods , Drugs, Chinese Herbal/therapeutic use , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/ultrastructure , Female , Humans , Liver/cytology , Liver/pathology , Liver/ultrastructure , Microscopy, Electron, Transmission , Microsomes, Liver , Models, Biological , Rats
10.
Chin Med ; 14: 8, 2019.
Article in English | MEDLINE | ID: mdl-30911327

ABSTRACT

Nowadays, traditional Chinese medicines (TCMs) have been reported to provide reliable therapies for viral pneumonia, but the therapeutic mechanism remains unknown. As a systemic approach, metabolomics provides an opportunity to clarify the action mechanism of TCMs, TCM syndromes or after TCM treatment. This review aims to provide the metabolomics evidence available on TCM-based therapeutic measures against viral pneumonia. Metabolomics has been gradually applied to the efficacy evaluation of TCMs in treatment of viral pneumonia and the metabolomics analysis exhibits a systemic metabolic shift in lipid, amino acids, and energy metabolism. Currently, most studies of TCM in treatment of viral pneumonia are untargeted metabolomics and further validations on targeted metabolomics should be carried out together with molecular biology technologies.

11.
Metabolites ; 9(1)2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30609645

ABSTRACT

Pyrexia is considered as a part of host's defense response to the invasion of microorganisms or inanimate matter recognized as pathogenic or alien, which frequently occurs in children. Jinxin oral liquid (JXOL) is a traditional Chinese medicine formula that has been widely used to treat febrile children in China. Experimental fever was induced by injecting yeast into young male Sprague-Dawley rats (80 ± 20 g) and the rectal temperature subsequently changed. Four hours later, the excessive production of interleukin (IL)-1ß and prostaglandin (PG) E2 induced by yeast was regulated to normal by JXOL administration. A rat brain metabolomics investigation of pyrexia of yeast and antipyretic effect of JXOL was performed using gas chromatography-mass spectrometry (GC-MS). Clear separation was achieved between the model and normal group. Twenty-two significantly altered metabolites were found in pyretic rats as potential biomarkers of fever. Twelve metabolites, significantly adjusted by JXOL to help relieve pyrexia, were selected out as biomarkers of antipyretic mechanism of JXOL, which were involved in glycolysis, purine metabolism, tryptophan mechanism, etc. In conclusion, the brain metabolomics revealed potential biomarkers in the JXOL antipyretic process and the associated pathways, which may aid in advanced understanding of fever and therapeutic mechanism of JXOL.

12.
Front Pharmacol ; 10: 1600, 2019.
Article in English | MEDLINE | ID: mdl-32047436

ABSTRACT

Rhein is one of active anthraquinone components in traditional Chinese herbal medicine Rheum palmatum L., possessing anti-inflammatory, antioxidant, antitumor, antiviral, and hepatoprotective activities. Human respiratory syncytial virus (RSV), a common virus, is able to result in pneumonia and bronchitis, which usually can be seen in infants. However, so far the effects of Rhein on RSV-induced pneumonia are still unknown. As the NLRP3 inflammasome is activated excessively, it is able to lead to inflammatory response and tissue injury in most viral infection process (including RSV infection) of respiratory tract. Therefore, we designed experiments to reveal whether Rhein can treat RSV-induced pneumonia by inhibiting NLRP3 inflammasome activation. In present research, we established the pneumonia model of BALB/C mice caused by RSV. First of all, the pathology of lung tissue and the weight of mice were evaluated, and the corresponding lung index was calculated. Additionally, the expression of pro-inflammatory mediators in serum and lung tissues, and related proteins (NLRP3, ASC and Caspase-1) of NLRP3 inflammasome and NF-κB pathway were detected by Enzyme-linked immunosorbent assay (ELISA), Real-time PCR (RT-PCR), Immunohistochemistry (IHC), and Western blot (WB), respectively. The determination of lung index and lung tissue pathological evaluation revealed that Rhein was able to alleviate lung infection and injury caused by RSV. The results of ELISA showed that Rhein was able to reduce the release of pro-inflammatory cytokines in the serum and lung tissues of RSV-induced BALB/c mice, including IL-1ß, IL-6, TNF-α, IL-18, and IL-33. Additionally, it was revealed that Rhein inhibited the immune inflammatory response of RSV-infected mice, which was likely to be associated with the inhibition the NLRP3 inflammasome activation via NF-κB pathway. To sum up, our results indicated that Rhein may inhibit RSV-induced pulmonary inflammatory response effectively; meanwhile, it is emphasized that Rhein therapy is likely to be a promising treatment on the RSV-infected lung inflammation and avoidance of lung tissue damage.

13.
J Appl Toxicol ; 39(1): 163-171, 2019 01.
Article in English | MEDLINE | ID: mdl-29931825

ABSTRACT

The use of Chinese medicines (CMs) during pregnancy has long been a major public health concern. Although CMs have been shown to be effective in treating infertility and preventing miscarriage, their use has been restricted, mainly because of limited knowledge of their potential toxicity. Accurate toxicology data are urgently required to assess whether these CMs are safe for maternal health and fetal development. Amniotic fluid (AF) contains carbohydrates, lipids and phospholipids, urea and proteins, all of which aid in the growth of the fetus and reflect the mother's health status as well. The changes in metabolomic patterns of AF are related to pathophysiological occurrences during the course of pregnancy. In this review, we provide a summary of the research performed in recent years on metabolomic AF samples, and use our previous study as an example to explore the feasibility of metabolomics of AF to evaluate the safety of CMs during pregnancy. We believe that metabolomics of AF play a far more important role than traditional morphology methods in the safety evaluation of CMs for pregnancy, with a higher sensitivity and correlation.


Subject(s)
Amniotic Fluid/metabolism , Biomarkers, Pharmacological/analysis , Fetal Development/drug effects , Medicine, Chinese Traditional/adverse effects , Metabolomics , Plant Extracts/toxicity , Adult , Female , Humans , Pregnancy , Risk Assessment
14.
Molecules ; 23(7)2018 07 04.
Article in English | MEDLINE | ID: mdl-29973556

ABSTRACT

The characterization of alkaloids is challenging because of the diversity of structures and the complicated fragmentation of collision induced structural dissociation in mass spectrometry. In this study, we analyzed the alkaloids in Sinomenium acutum (Thunb.) Rehderet Wil by high resolution mass spectrometry. Chromatographic separation was achieved on a Phenomenex Kinetex C18 (2.1 mm × 100 mm, 2.6 µm) column with a mobile phase consisting of acetonitrile and water (0.1% formic acid) under gradient elution. A total of 52 alkaloids were well separated and 45 of them were structurally characterized, including morphinans, aporphines, benzylisoquinolines, and protoberberines. Specially, mass spectrometric study of the morphinan alkaloids were explicitly investigated. Electrostatic potential plot from simulation was calculated for determination of protonation sites. Further fragmentation analysis suggested that the C3H7N, CH4O, and H2O elimination was displayed in MS² spectrum. These fragmentation pathways are universal for morphinan alkaloids having methoxy substituted cyclohexenone or cyclohexadienone moieties. Additionally, for nitrogen oxides, an ion-neutral complex intermediate is involved in the fragmentation process, generating additional oxygenated ions. All these results provided the universal rules of fragmentation used for detection of alkaloids, and will be expected to be highly useful for comprehensive study of multi-components in the herbal medicine analysis.


Subject(s)
Alkaloids/chemistry , Alkaloids/isolation & purification , Sinomenium/chemistry , Chromatography, Liquid , Mass Spectrometry , Models, Molecular , Molecular Structure , Plant Extracts/chemistry , Plant Extracts/isolation & purification
15.
Article in English | MEDLINE | ID: mdl-29890405

ABSTRACT

Flos Lonicerae Japonica-Fructus Forsythiae herb pair (Yin-Qiao in Chinese, YQ), is used clinically for the treatment of viral pneumonia due to its heat-clearing and detoxifying functions. In the present work, the effect of YQ in H1N1-induced inflammation in mice was investigated by metabolomics based on GC-MS. Body weight and histological results were used to assess the lung injury, while the levels of IL-6 and TNF-α in plasma were used to evaluate the extent of inflammation. The acquired GC-MS data were further subjected to multivariate data analysis, and the significantly altered metabolites identified. After statistical and pathway analysis, 17 significantly altered metabolites and 3 possible metabolic pathways were found in plasma between normal and H1N1-induced pneumonia mice, while 17 significant differential metabolites were identified when YQ treatment group was compared with model group. This work indicates that oral administration of YQ could protect mice from H1N1-induced inflammation partially by ameliorating the associated metabolic disturbances.


Subject(s)
Drugs, Chinese Herbal/administration & dosage , Forsythia/chemistry , Inflammation , Metabolome/drug effects , Plant Extracts/administration & dosage , Animals , Drugs, Chinese Herbal/pharmacology , Female , Fruit/chemistry , Gas Chromatography-Mass Spectrometry , Host-Pathogen Interactions/drug effects , Inflammation/metabolism , Inflammation/virology , Influenza A Virus, H1N1 Subtype , Lonicera , Male , Metabolomics , Mice , Mice, Inbred C57BL , Orthomyxoviridae Infections/metabolism , Plant Extracts/pharmacology
16.
Biomed Pharmacother ; 103: 1376-1383, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29864921

ABSTRACT

Human respiratory syncytial virus (RSV) is a common virus that causes pneumonia and bronchitis, mostly in infants. Our previous study showed that Jinxin oral liquid (JOL), derived from traditional Chinese medicine, had anti-inflammatory and therapeutic effects on RSV-related pneumonia. However, little is known about the underlying mechanisms of these effects. During a viral infection, including RSV infection, the inflammasome pathway is excessively activated, resulting in an inflammatory reaction and severe tissue damage. Inhibition of the inflammasome pathway has shown good therapeutic effects on lung inflammation. In the present study, we explored the effect of JOL on RSV-induced excessive inflammation in BALB/c mice. Pathological evaluation of lung tissue and measurement of the lung index showed that JOL alleviated lung infection and tissue injury induced by RSV. The enzyme-linked immunosorbent assay showed that JOL reduced the release of inflammatory factors, including interleukin-1ß(IL-1ß), interleukin-18(IL-18) and interleukin-33(IL-33), in the serum and lung homogenate of RSV-infected mice. Furthermore, the results of real-time PCR, immunohistochemistry, and western blot analyses showed that JOL inhibited the immune inflammatory response of mice infected with RSV through blockade of the NOD-like receptor protein 3(NLRP3)/apoptosis-associated speck-like protein containing a caspase recruitment domain(ASC)/Caspase-1 signalling pathway, as evidenced by the down regulation of the mRNA and protein expression of three key components in the pathway. Collectively, our results showed that JOL inhibited pulmonary inflammation caused by RSV infection. Thus, JOL may be a promising remedy for lung inflammation caused by RSV infection and may help avoid lung tissue damage.


Subject(s)
Caspase 1/metabolism , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacology , Inflammation/metabolism , Inflammation/virology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Respiratory Syncytial Virus, Human/drug effects , Signal Transduction , Administration, Oral , Animals , Cytokines/blood , Disease Models, Animal , Drugs, Chinese Herbal/therapeutic use , Female , Gene Expression Regulation/drug effects , Humans , Lung/drug effects , Lung/metabolism , Lung/pathology , Mice, Inbred BALB C , RNA, Messenger/genetics , RNA, Messenger/metabolism , Respiratory Syncytial Virus Infections/blood , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus Infections/pathology , Respiratory Syncytial Virus Infections/virology , Signal Transduction/drug effects
17.
Anal Bioanal Chem ; 410(16): 3743-3755, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29632971

ABSTRACT

A sensitive, accurate, and time-saving approach was developed for the simultaneous quantification of eight sulfur compounds in the sulfur pathway, which could reflect the status of an organism, including oxidative stress, signal transduction, enzyme reaction, and so on. In order to overcome the instability of highly reactive sulfhydryl compounds, N-ethylmaleimide derivatization was adopted to effectively protect sulfhydryl-containing samples. Using isotope-labeled glutathione (GSH-13C2, 15N), the validated method was demonstrated to offer satisfactory linearity, accuracy, and precision. Separation was done by UHPLC, using a BEH amide column. Accordingly, 0.1% formic acid acetonitrile was selected as the precipitant. A tandem mass spectrometer was coupled to the chromatographic system and afforded a detection limit of 0.2 ng/mL. Good linearity was maintained over a wide concentration range (r2 > 0.994), and the accuracy was in the range of 86.6-114% for all the studied compounds. The precision, expressed in RSD%, ranged from 1.1% to 9.4% as intraday variability and less than 13% as interday precision for all of the analytes. The approach was applied to study the potential therapeutic mechanism of a well-known traditional Chinese medicine, Shao Fu Zhu Yu decoction. The results suggested that Shao Fu Zhu Yu decoction might protect against oxidative damage by increasing the concentrations of sulfhydryl compounds. Graphical abstract An approach to quantitatively determining sulfur compounds in the sulfur pathway simultaneously wasestablished and applied to the study of the effect of Shao Fu Zhu Yu decoction.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Metabolic Networks and Pathways/drug effects , Sulfur Compounds/blood , Tandem Mass Spectrometry/methods , Animals , Antioxidants/pharmacology , Chromatography, High Pressure Liquid/methods , Drug Evaluation, Preclinical/methods , Female , Limit of Detection , Oxidative Stress/drug effects , Rats , Rats, Sprague-Dawley , Sulfur Compounds/metabolism
18.
Biomed Pharmacother ; 102: 494-501, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29579710

ABSTRACT

Luteal phase defects (LPD) are an important etiology of infertility which has increased in recent years. Studies have shown that bu-shen-zhu-yun decoction (BSZY-D) can lower the expression of estrogen receptor and progesterone receptor, in rats endometrium of embryonic implantation period, which upregulated by mifepristone, and improve uterine receptivity. The aim of present study was to determine the effect of BSZY-D on the synthesis and secretion of gonadotropic hormones in the anterior pituitary cells of rats. Rats were treated with saline (control) or BSZY-D two times/day for three estrous cycles by gavage. The cerebrospinal fluid (CSF) were collected for further cell treatment. The components in BSZY-D, serum and CSF were analysed by High Performance Liquid Chromatography (HPLC). Cells were either pretreated with normal CSF or BSZY-D/CSF before being stimulated with or without cetrorelix. The mRNA and proteins levels of receptors, hormones, and transcription factors were detected by RT-PCR, western blot analysis and immunostaining. We show that non-toxic concentrations of cetrorelix, a GnRH antagonist, can reduce the mRNA and protein levels of GnRHR, LH, and FSH. This effect could be reversed by the addition of BSZY-D/CSF. We also show decreased mRNA and protein expression of transcription factors, such as CREB, and Egr-1 and secretory vescicles, including SNAP-25 and Munc-18 upon treatment with cetrorelix could be reversed post co-treatment with BSZY-D/CSF. These results indicate that BSZY-D/CSF treatment led to increased levels of GnRHR, transcription factors, and secretory vesicles leading to increased secretion of FSH and LH. Thus, BSZY-D presents a promising candidate to treat luteal phase defects and infertility.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Follicle Stimulating Hormone, beta Subunit/biosynthesis , Follicle Stimulating Hormone, beta Subunit/metabolism , Luteinizing Hormone, beta Subunit/biosynthesis , Luteinizing Hormone, beta Subunit/metabolism , Pituitary Gland, Anterior/cytology , Animals , Cell Line, Tumor , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Chromatography, High Pressure Liquid , Early Growth Response Protein 1/metabolism , Female , Gonadotropin-Releasing Hormone/analogs & derivatives , Gonadotropin-Releasing Hormone/pharmacology , Munc18 Proteins/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Sprague-Dawley , Receptors, LHRH/metabolism , Synaptosomal-Associated Protein 25/metabolism , Transcription Factors/metabolism , Up-Regulation/drug effects
19.
Molecules ; 23(1)2018 Jan 22.
Article in English | MEDLINE | ID: mdl-29361795

ABSTRACT

A sensitive and rapid ultra high-performance liquid-chromatography tandem mass spectrometry (UHPLC-MS/MS) method has been applied to investigate the influence of rheumatoid arthritis (RA) on the pharmacokinetics of nine analytes (daphnetin, daphnoretin, 7-hydroxycoumarin, liquiritin, isoliquiritin, liquiritigenin, isoliquiritigenin, glycyrrhizin, and glycyrrhetinic acid), which are major active components in Zushima-Gancao extract. The analytes and internal standard (IS) were separated in a Hypersil Gold C18 column and detected on a triple-stage quadrupole mass spectrometer using the validated method. All analytes exhibited good linearities (R² > 0.98), and the lower limit of quantification (LLOQs) were sufficient for quantitative analysis. Intra- and inter-batch precision were all within 14.96% while the accuracy of nine analytes ranged from -17.99 to 14.48%, and these results were all within acceptance criteria. The extraction recoveries, matrix effects, and stabilities were all satisfactory. Main pharmacokinetic parameters of each compound were compared, and significant differences were found in parameters of daphnetin, daphnoretin, liquiritin, isoliquiritin, isoliquiritigenin, glycyrrhizin, and glycyrrhetinic acid, especially the last one, between the two groups. Therefore, adjuvant-induced arthritis has different effects on the pharmacokinetics of ingredients in Zushima-Gancao extract. The comparative pharmacokinetic study between normal and adjuvant-induced arthritis rats might provide more comprehensive information to guide the clinical usage of Zushima-Gancao extract for treating RA.


Subject(s)
Chromatography, High Pressure Liquid , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Phytochemicals/chemistry , Tandem Mass Spectrometry , Animals , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Drug Stability , Drugs, Chinese Herbal/pharmacokinetics , Male , Molecular Structure , Rats , Reproducibility of Results
20.
J Ethnopharmacol ; 213: 221-229, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29141195

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Banxia (BX) is the dried tuber of Pinellia ternata (Thunb.) Breit., a commonly prescribed Chinese medicinal herb for the treatment of cough, phlegm, and vomiting in pregnant women. However, raw BX has been demonstrated to exert toxic effects on reproduction and the precise and comprehensive mechanisms remain elusive. AIM OF THE STUDY: We applied an iTRAQ (isobaric tags for relative and absolute quantitation, iTRAQ)-based proteomic method to explore the mechanisms of raw BX-induced fetal toxicity in mice. MATERIALS AND METHODS: The mice were separated into two groups, control mice and BX-treated mice. From gestation days 6-8, the control group was treated with normal saline and the BX group was exposed to BX suspension (2.275g/kg/day). Gastrulae were obtained and analyzed using the quantitative proteomic approach of iTRAQ coupled to liquid chromatography-tandem mass spectrometry (LC-MS/MS). A multi-omics data analysis tool, OmicsBean (http://www.omicsbean.cn), was employed to conduct bioinformatic analysis of differentially abundant proteins (DAPs). Quantitative real-time PCR (qRT-PCR) and western blotting methods were applied to detect the protein expression levels and validate the quality of the proteomics. RESULTS: A total of 1245 proteins were identified with < 1% false discovery rate (FDR) and 583 protein abundance changes were confidently assessed. Moreover, 153 proteins identified in BX-treated samples showed significant differences in abundance. Bioinformatics analysis showed that the functions of 37 DAPs were predominantly related to nervous system development. The expression levels of the selected proteins for quantification by qRT-PCR or western blotting were consistent with the results in iTRAQ-labeled proteomics data. CONCLUSION: The results suggested that oral administration of BX in mice may cause fetal abnormality of the nervous system. The findings may be helpful to elucidate the underlying mechanisms of BX-induced embryotoxicity.


Subject(s)
Drugs, Chinese Herbal/toxicity , Nervous System/drug effects , Nervous System/growth & development , Pinellia/chemistry , Proteomics/statistics & numerical data , Animals , Female , Gastrula/drug effects , Gastrula/metabolism , Mice , Nervous System/metabolism , Plant Tubers/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL