Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Main subject
Language
Affiliation country
Publication year range
1.
Int J Biol Macromol ; 219: 1284-1296, 2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36037912

ABSTRACT

Polygala tenuifolia is extensively used to treat amnesia in traditional Chinese medicine, and pharmacological studies have reported the beneficial effects of P. tenuifolia on intelligence and cognition. In the present study, the crude polysaccharide alkali-extracted from P. tenuifolia roots (PTB) inhibited lipopolysaccharide-induced microglia/astrocyte activation and significantly improved the learning and memory ability of Alzheimer's disease (AD) rats. To determine its bioactive components, a heteropolysaccharide (PTBP-1-3) was isolated from PTB. Structural analysis showed that PTBP-1-3 was composed of α-L-Araf-(1→, â†’3)-α-L-Araf-(1→, →5)-α-L-Araf-(1→, →3,5)-α-L-Araf-(1→, →2,5)-α-L-Araf-(1→, ß-D-Xylp-(1→, →2,3,4)-ß-D-Xylp-(1→, α-L-Rhap-(1→, ß-D-Galp-(1→, →4)-α-D-Galp-(1→, →6)-α-D-Galp-(1→, →6)-α-D-Glcp-(1→, →3,6)-α-D-Glcp-(1→, →6)-α-D-Manp-(1→, and →2,4)-ß-D-Manp-(1→ residues. PTBP-1-3 decreased the production of NO, TNF-α, and IL-1ß in lipopolysaccharide-activated BV2 microglia cells in a manner similar to that of minocycline. In conclusion, PTBP-1-3 exhibited a potent inhibitory effect on neuroinflammation, and could be one of the bioactive ingredients in PTB for anti-neuroinflammation. PTB and PTBP-1-3 may be potential therapeutic agents for the treatment of AD.


Subject(s)
Polygala , Alkalies , Animals , Lipopolysaccharides/pharmacology , Minocycline , Polygala/chemistry , Polysaccharides/chemistry , Rats , Tumor Necrosis Factor-alpha
SELECTION OF CITATIONS
SEARCH DETAIL