Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Small ; 19(14): e2206174, 2023 04.
Article in English | MEDLINE | ID: mdl-36651135

ABSTRACT

Multidrug resistance (MDR) and metastasis in cancer have become increasingly serious problems since antitumor efficiency is greatly restricted by a single therapeutic modality and the insensitive tumor microenvironment (TME). Herein, metal-phenolic network-functionalized nanoparticles (t-P@TFP NPs) are designed to realize multiple therapeutic modalities and reshape the TME from insensitive to sensitive under multimodal imaging monitoring. After a single irradiation, a near-infrared laser-activated multistage reaction occurs. t-P@TFP NPs trigger the phase transition of perfluoropentane (PFP) to release tannic acid (TA)/ferric ion (Fe3+ )-coated paclitaxel (PTX) and cause hyperthermia in the tumor region to efficiently kill cancer cells. Additionally, PTX is released after the disassembly of the TA-Fe3+ film by the abundant adenosine triphosphate (ATP) in the malignant tumor, which concurrently inhibits ATP-dependent drug efflux to improve sensitivity to chemotherapeutic agents. Furthermore, hyperthermia-induced immunogenic cell death (ICD) transforms "cold" tumors into "hot" tumors with the assistance of PD-1/PD-L1 blockade to evoke antitumor immunogenicity. This work carefully reveals the mechanisms underlying the abilities of these multifunctional NPs, providing new insights into combating the proliferation and metastasis of multidrug-resistant tumors.


Subject(s)
Nanoparticles , Neoplasms , Humans , Phototherapy/methods , Paclitaxel/pharmacology , Neoplasms/therapy , Drug Delivery Systems/methods , Drug Resistance, Multiple , Metals , Cell Line, Tumor , Tumor Microenvironment
2.
J Nanobiotechnology ; 20(1): 80, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35168608

ABSTRACT

BACKGROUND: Comprehensive antitumor therapy through integrated multimodal means has drawn increasing attention owing to its high efficiency and metastasis suppression. RESULTS: We describe a synergistic triple protocol combining photothermal and sonodynamic therapy (PTT and SDT), together with immune checkpoint blockade for the inhibition of breast cancer growth and metastases in the 4T1 mouse model. PTT and SDT are synergistically augmented by a novel multimodal imaging nanoprobe integrated with cancer cell membrane-biomimetic nanoparticles (CHINPs) loaded with superparamagnetic iron oxide (SPIO) and hematoporphyrin monomethyl ether (HMME). CHINPs exhibit excellent homologous tumor targeting, and are sequentially triggered by ultrasound and near infrared (NIR) light under the guidance of magnetic resonance, photoacoustic and photothermal imaging, leading to complete in situ tumor eradication and systemic anti-tumor immune activation. Further combination of this approach with immune checkpoint blockade therapy is shown to suppress tumor metastasis. CONCLUSION: This work provides proof-of-principle for triple therapy using multimodal imaging-guided PTT/SDT based on biomimetic nanoprobes in combination with immunotherapy to eliminate tumors.


Subject(s)
Nanoparticles , Phototherapy , Animals , Biomimetics , Cell Line, Tumor , Humans , Immunotherapy , Mice
3.
Biomaterials ; 277: 121100, 2021 10.
Article in English | MEDLINE | ID: mdl-34492584

ABSTRACT

Ferroptosis-based nanomedicine has drawn increasing attention in antitumor therapy because of the advantages of this unconventional mode of apoptosis, but the difficulties of delivery to the tumor site and surface-to-core penetration after arrival seriously hinder further clinical transformation and application. Herein, we propose an unprecedented strategy of injecting magnetic nanodroplets (MNDs) to solve these two longstanding problems. MNDs are nanocarriers that can carry multifunctional drugs and imaging materials. MNDs can effectively accumulate in the tumor site by active tumor targeting (multifunctional drugs) and passive tumor targeting (enhanced permeability and retention effect), allowing diffusion of the MNDs from the surface to the core through mild-temperature magnetic fluid hyperthermia (MHT) under multimodal imaging guidance. Finally, the ferroptosis pathway is activated deep within the tumor site through the drug release. This approach was inspired by the ability of mild-temperature MHT to allow MNDs to quickly pass through the blood vessel-tumor barrier and deeply penetrate the tumor tissue from the surface to the core to amplify the antitumor efficacy of ferroptosis. This strategy is termed as "thermoferroptosis sensitization". Importantly, this behavior can be performed under the guidance of multimodal imaging, making the design of MNDs for cancer therapy safer and more reasonable.


Subject(s)
Hyperthermia, Induced , Nanoparticles , Cell Line, Tumor , Magnetic Phenomena , Multimodal Imaging
SELECTION OF CITATIONS
SEARCH DETAIL