Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Mitochondrial DNA B Resour ; 9(2): 233-236, 2024.
Article in English | MEDLINE | ID: mdl-38313466

ABSTRACT

Pulsatilla chinensis f. alba D. K. Zang 1993 is a forma of Pulsatilla chinensis (Bge.) Regel, the root of P. chinensis is traditional Chinese medicine called Pulsatillae radix. The biggest difference between P. chinensis f. alba and P. chinensis is that P. chinensis f. alba sepals is white. The complete chloroplast genome of P. chinensis f. alba was sequenced using the Illumina NovaSeq platform for the first time. The lengths of the genome, large single-copy (LSC), small single-copy (SSC), two inverted repeats (IRs), and GC content were 163,654 bp, 82,355 bp, 19,069 bp, 31,115 bp, and 37.2%, respectively. It had 134 genes, including 90 protein-coding genes, 36 tRNA genes, and eight rRNA genes. The maximum-likelihood tree indicated that P. chinensis f. alba had a closer relationship with P. chinensis. This study would provide a theoretical basis for the further study of Pulsatilla plants genetics phylogenetic research.

2.
Appl Microbiol Biotechnol ; 107(17): 5555-5567, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37436481

ABSTRACT

The plant-associated microbiome has an effect on plant growth. Pulsatilla chinensis (Bge.) Regel is an important Chinese medicinal plant. Currently, there is little understanding of the P. chinensis-associated microbiome and its diversity and composition. Here, the core microbiome associated with the root, leaf, and rhizospheric soil compartments of P. chinensis from five geographical locations was analyzed by the metagenomics approach. The alpha and beta diversity analysis showed that the microbiome associated with P. chinensis was shaped by the compartment, especially in the bacterial community. The geographical location had little influence on microbial community diversity associated with root and leaf. Hierarchical clustering distinguished the microbial communities of rhizospheric soil based on their geographical location and among the soil properties, pH was showed the more stronger effect on the diversity of rhizospheric soil microbial communities. Proteobacteria was the most dominant bacterial phylum in the root, leaf, and rhizospheric soil. Ascomycota and Basidiomycota were the most dominant fungal phyla in different compartments. Rhizobacter, Anoxybacillus, and IMCC26256 were the most important marker bacterial species for root, leaf, and rhizospheric soil screened by random forest, respectively. The fungal marker species for root, leaf, and rhizospheric soil were not only different across the compartments but also the geographical locations. Functional analysis showed that P. chinensis-associated microbiome had the similar function which had no obvious relationship with geographical location and compartment. The associated microbiome indicated in this study can be used for identifying microorganisms related to the quality and growth of P. chinensis. KEY POINTS: • Microbiome associated with P. chinensis was shaped by the compartment • Microbiome composition and abundance associated with rhizospheric soil were affected by the geographical location • Compared with fungi, bacterial associated with P. chinensis composition and diversity were more stable in different geographical locations and compartments.


Subject(s)
Microbiota , Plants, Medicinal , Pulsatilla , Rhizosphere , Soil Microbiology , Plant Roots/microbiology , Bacteria/genetics , Soil/chemistry
3.
BMC Plant Biol ; 23(1): 86, 2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36759759

ABSTRACT

BACKGROUND: Burdock is a biennial herb of Asteraceae found in Northern Europe, Eurasia, Siberia, and China. Its mature dry fruits, called Niu Bang Zi, are recorded in various traditional Chinese medicine books. With the development of sequencing technology, the mitochondrial, chloroplast, and nuclear genomes, transcriptome, and sequence-related amplified polymorphism (SRAP) fingerprints of burdock have all been reported. To make better use of this data for further research and analysis, a burdock database was constructed. RESULTS: This burdock multi-omics database contains two burdock genome datasets, two transcriptome datasets, eight burdock chloroplast genomes, one burdock mitochondrial genome, one A. tomentosum chloroplast genome, one A. tomentosum mitochondrial genome, 26 phenotypes of burdock varieties, burdock rhizosphere-associated microorganisms, and chemical constituents of burdock fruit, pericarp, and kernel at different growth stages (using UPLC-Q-TOF-MS). The wild and cultivation distribution of burdock in China was summarized, and the main active components and pharmacological effects of burdock currently reported were concluded. The database contains ten central functional modules: Home, Genome, Transcriptome, Jbrowse, Search, Tools, SRAP fingerprints, Associated microorganisms, Chemical, and Publications. Among these, the "Tools" module can be used to perform sequence homology alignment (Blast), multiple sequence alignment analysis (Muscle), homologous protein prediction (Genewise), primer design (Primer), large-scale genome analysis (Lastz), and GO and KEGG enrichment analyses (GO Enrichment and KEGG Enrichment). CONCLUSIONS: The database URL is http://210.22.121.250:41352/ . This burdock database integrates molecular and chemical data to provide a comprehensive information and analysis platform for interested researchers and can be of immense help to the cultivation, breeding, and molecular pharmacognosy research of burdock.


Subject(s)
Arctium , Plants, Medicinal , Plants, Medicinal/genetics , Arctium/genetics , Arctium/chemistry , Multiomics , Plant Breeding , Medicine, Chinese Traditional , Plant Extracts/chemistry
4.
Physiol Mol Biol Plants ; 28(7): 1421-1435, 2022 Jul.
Article in English | MEDLINE | ID: mdl-36051231

ABSTRACT

Three species of Gentiana (Gentiana manshurica kitag., Gentiana scabra bunge., and Gentiana triflora pall.) were the main source for an important traditional Chinese medicine, "Longdan", which was first mentioned in " Shennong materia medica Sutra " 2000 years ago. Until recently, there were very few reports on taxonomic classification of these three traditional medicinal Gentiana species. In the current study, chloroplast genomes of the three Gentiana species were sequenced and the phylogenetic analyses were performed in combination with 31 NCBI downloaded Gentiana species sequences and two species of Swertia as outgroup. Based on the phylogenetic results, a new taxonomic classification for Gentiana was proposed, including 4 independent clades with 6 subdivisions (Group 1-Group 6). All the general features, SSR characteristics and gene composition of Gentiana chloroplast genomes strongly supported such a new classification system for Gentiana, which could lay a theoretical foundation for Gentiana in the molecular evolutionary research. Finally, phylogenetic analyisis also demonstrated that the three examined species from Gentiana could cluster together into one group (Group 6), which was far away from the evolutionary position of the medicinal species, Gentiana rigescens Franch, which was consistent with the traditional classification in traditional medicinal uses and taxonomy. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01217-0.

5.
Mitochondrial DNA B Resour ; 7(8): 1516-1518, 2022.
Article in English | MEDLINE | ID: mdl-36034535

ABSTRACT

Dictamnus dasycarpus Turcz. 1842 is a medicinal plant of China. Its dry root bark is called BAIXIANPI, which is a common traditional Chinese medicine. Here, we report the complete chloroplast genome of D. dasycarpus. The length of the genome, large single-copy (LSC), small single-copy (SSC), inverted repeat (IR), and GC content was 157,056 bp, 84,497 bp, 18,487 bp, 27,036 bp, and 38.5%, respectively. A total of 132 genes were annotated, including 87 protein coding, eight rRNA, and 37 tRNA genes. Interestingly, 15 genes contained single intron while two others contained two introns. The phylogenetic tree showed the two D. dasycarpus (D. albus) clustered in a clade, which was sister to clade formed by the species of Melicope, Tetradium, Phellodendron, and Zanthoxylum.

6.
Zhongguo Zhong Yao Za Zhi ; 47(11): 2932-2937, 2022 Jun.
Article in Chinese | MEDLINE | ID: mdl-35718514

ABSTRACT

In this study, the chloroplast genome of Asarum sieboldii f. seoulense was sequenced, analyzed, and compared with chloroplast genomes of other medicinal plants in Aristolochiaceae downloaded from GenBank, aiming to clarify the characteristics of the chloroplast genome of A. sieboldii f. seoulense and the differences in chloroplast genome among medicinal plants of Aristolochiaceae. To be specific, the chloroplast genome of A. sieboldii f. seoulense was sequenced and assembled by high-throughput sequencing, and the general characteristics, repeats, inverted repeat(IR) boundary, and phylogenetic relationship of the chloroplast genomes of 11 medicinal species in Aristolochiaceae were analyzed with REPuter. The result showed that the genome of A. sieboldii f. seoulense was 167 293 bp, with large single-copy(LSC) region of 89 840 bp, small single-copy(SSC) region of 21 415 bp, IR region of 28 019 bp, and GC content of 37.9%. A total of 133 genes were annotated, including 89 protein-coding genes, 36 tRNA genes and 8 rRNA genes. The chloroplast genomes of the 11 medicinal species were 159 308-167 293 bp, with 130-134 genes annotated. Forward(F), reverse(R), complement(C), and palindromic(P) long repeats and simple sequence repeat(SSR) were found in the chloroplast genomes of five species. Among them, A. sieboldii f. seoulense had six types of SSR. In the phylogenetic tree, A. sieboldii f. seoulense and A. heterotropoides were in the same clade. The result is expected to lay a basis for the classification, identification, and phylogeny of medicinal plants in Aristolochiaceae.


Subject(s)
Aristolochiaceae , Genome, Chloroplast , Plants, Medicinal , Aristolochiaceae/genetics , Microsatellite Repeats , Phylogeny , Plants, Medicinal/genetics
7.
Mitochondrial DNA B Resour ; 7(4): 692-693, 2022.
Article in English | MEDLINE | ID: mdl-35478853

ABSTRACT

The complete chloroplast genome of an important medicinal plant, Convallaria majalis Linnaeus, was sequenced for the first time. The entire circular genome is 162,218 bp in length, with 37.9% GC contents. The genome has consisted of a large single-copy region (LSC) with a length of 85,417 bp, a small single-copy region (SSC) with a length of 18,495 bp, and two inverted repeat regions (IRs) with a length of 29,153 bp each. The genome harbored 133 genes, including 87 protein coding genes, 38 tRNA genes, and eight rRNA genes. The phylogenetic tree of 24 plant species was constructed based on the maximum-likelihood method. This study will provide theoretical basis for further study on plant genetics phylogenetic research.

8.
Mitochondrial DNA B Resour ; 7(3): 476-477, 2022.
Article in English | MEDLINE | ID: mdl-35295907

ABSTRACT

The complete chloroplast genome of an important medicinal plant, Veratrum nigrum Linnaeus, was sequenced. The entire circular genome is 151,580 bp in length, with 37.7% GC contents. The genome has a large single-copy (LSC) region with a length of 81,806 bp, a small single-copy (SSC) region with a length of 17,472 bp, and two inverted repeat regions (IRs) with a length of 26,151 bp. It harbored 131 genes, including 85 protein coding genes, 38 tRNA genes, and eight rRNA genes. Phylogenetic analysis suggested V. nigrum formed a monophyletic clade with relatively short genetic distance to Veratrum oxysepalum and Veratrum taliense. This study will provide theoretical basis for further study on plant genetics phylogenetic research.

9.
Mitochondrial DNA B Resour ; 6(3): 779-781, 2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33763576

ABSTRACT

Aconitum kusnezoffii Rchb. is a medicinal plant in the Ranunculaceae family. In this study, we report the first complete mitochondrial genome of A. kusnezoffii. The total length of the mitochondrial genome of A. kusnezoffii is 440,720 bp and the GC content of 46.85%. The mitochondrial genome contained 37 protein-coding genes, 29 tRNAs, and three rRNAs. These data will provide the basis for the systematic evolutionary analysis of Ranunculaceae.

10.
Mitochondrial DNA B Resour ; 6(1): 182-184, 2021 Jan 16.
Article in English | MEDLINE | ID: mdl-33537436

ABSTRACT

The complete mitochondrial genome of medicinal plant, Euonymus alatus, was sequenced for the first time. The genome sequence is 1,045,106 bp in length (GenBank accession number MW009108), with 44.98% GC contents. There are 72 genes in the genome, including 41 known protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), and three ribosomal RNAs (rRNAs). The phylogenetic trees of 28 species are constructed using the maximum-likelihood method. The information will provide references for phylogenetic research.

11.
Mitochondrial DNA B Resour ; 6(2): 475-477, 2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33628894

ABSTRACT

The complete mitochondrial genome of an important medicinal plant Glycyrrhiza uralensis Fisch. is reported for the first time. The mitochondrial genome sequence of G. uralensis was 463,869 bp in length and had a GC content of 45.19%. The genome contained 40 protein-coding genes (PCGs), 30 transfer RNAs (tRNAs), and three ribosomal RNAs (rRNAs). The phylogenetic tree was built based on 25 plants, using the maximum-likelihood method. These data will provide certain help to determine the taxonomic status of G. uralensis.

12.
Biomed Res Int ; 2020: 3536761, 2020.
Article in English | MEDLINE | ID: mdl-33123569

ABSTRACT

Schisandra chinensis, which has a high development value, has long been used as medicine. Its mature fruits (called Wuweizi in Chinese) have long been used in the famous traditional Chinese medicine (TCM) recorded in the "Chinese Pharmacopoeia." Chloroplasts (CP) are the highly conserved primitive organelles in plants, which can serve as the foundation for plant classification and identification. This study introduced the structures of the CP genomes of three Schisandraceae species and analyzed their phylogenetic relationships. Comparative analyses on the three complete chloroplast genomes can provide us with useful knowledge to identify the three plants. In this study, approximately 5 g fresh leaves were harvested for chloroplast DNA isolation according to the improved extraction method. A total of three chloroplast DNAs were extracted. Afterwards, the chloroplast genomes were reconstructed using denovo combined with reference-guided assemblies. General characteristics of the chloroplast genome and genome comparison with three Schisandraceae species was analyzed by corresponding software. The total sizes of complete chloroplast genomes of S. chinensis, S. sphenanthera, and Kadsura coccinea were 146875 bp, 146842 bp, and 145399 bp, respectively. Altogether, 124 genes were annotated, including 82 protein-coding genes, 34 tRNAs, and 8 rRNAs of all 3 species. In SSR analysis, only S. chinensis was annotated to hexanucleotides. Moreover, comparative analysis of chloroplast Schisandraceae genome sequences revealed that the gene order and gene content were slightly different among Schisandraceae species. Finally, phylogenetic trees were reconstructed, based on the genome-wide SNPs of 38 species. The method can be used to identify and differentially analyze Schisandraceae plants and offer useful information for phylogenetics as well as further studies on traditional medicinal plants.


Subject(s)
Chloroplasts/genetics , Genome, Chloroplast/genetics , Plants, Medicinal/genetics , Schisandraceae/genetics , DNA, Chloroplast/genetics , Gene Order/genetics , Genomics/methods , Phylogeny , Polymorphism, Single Nucleotide/genetics
13.
Chin Med ; 14: 53, 2019.
Article in English | MEDLINE | ID: mdl-31798674

ABSTRACT

BACKGROUND: Baitouweng is a traditional Chinese medicine with a long history of different applications. Although referred to as a single medicine, Baitouweng is actually comprised of many closely related species. It is therefore critically important to identify the different species that are utilized in these medicinal applications. Knowledge about their phylogenetic relationships can be derived from their chloroplast genomes and may provide additional insights into development of molecular markers. METHODS: Genomic DNA was extracted from six species of Pulsatilla and then sequenced on an Illumina HiSeq 4000. Sequences were assembled into contigs by SOAPdenovo 2.04, aligned to the reference genome using BLAST, and then manually corrected. Genome annotation was performed by the online DOGMA tool. General characteristics of the cp genomes of the six species were analyzed and compared with closely related species. Additionally, phylogenetic trees were constructed, based on single nucleotide polymorphisms (SNPs) and 51 shared protein-coding gene sequences in the cp genome among all 31 species via maximum likelihood. RESULTS: The size of cp genomes of P. chinensis (Bge.) Regel, P. chinensis (Bge.) Regel var. kissii (Mandl) S. H. Li et Y. H. Huang, P. cernua (Thunb.) Bercht. et Opiz f. plumbea J. X. Ji et Y. T. zhao, P. dahurica (Fisch.) Spreng, P. turczaninovii Kryl. et Serg, and P. cernua (Thunb.) Bercht. et Opiz. were 163,851 bp, 163,756 bp, 162,481 bp, 162,450 bp, 162,795 bp, and 162,924 bp, respectively. Each species included two inverted repeat regions, a small single-copy region, and a large single-copy region. A total of 134 genes were annotated, including 90 protein-coding genes, 36 tRNAs, and eight rRNAs across all species. In simple sequence repeat analysis, only P. dahurica was found to contain hexanucleotide repeats. A total of 26, 39, 32, 37, 32 and 43 large repeat sequences were identified in the genic regions of the six Pulsatilla species. Nucleotide diversity analysis revealed that the rpl36 gene and ccsA-ndhD region have the highest Pi value. In addition, two phylogenetic trees of the cp genomes were constructed, which laced all Pulsatilla species into one branch within Ranunculaceae. CONCLUSIONS: We identified and analyzed the cp genome features of six species of P. Miller, with implications for species identification and phylogenetic analysis.

14.
Chin Med ; 14: 9, 2019.
Article in English | MEDLINE | ID: mdl-30911328

ABSTRACT

BACKGROUND: Dryopteris crassirhizoma Nakai and Osmunda japonica Thunb. are ferns that are popularly used for medicine, as recorded by the Chinese pharmacopoeia, and are distributed in different regions of China. However, O. japonica is not record in the Standards of Chinese Herbal Medicines in Hong Kong. Research on identification methods of D. crassirhizoma and O. japonica is necessary and the phylogenetic position of the two species should be identified. The plastid genome is structurally highly conserved, providing valuable sources of genetic markers for phylogenetic analyses and development of molecule makers for identification. METHODS: The plastid genome DNA was extracted from both fern species and then sequenced on the Illumina Hiseq 4000. Sequences were assembled into contigs by SOAPdenovo2.04, aligned to the reference genome using BLAST, and then manually corrected. Genome annotation was performed by the online DOGMA tool. General characteristics of the plastid genomes of the two species were analyzed and compared with closely related species. Additionally, phylogenetical trees were reconstructed by maximum likelihood methods. The content of dryocrassin of the two species were determined according to the Standards of Chinese Herbal Medicines in Hong Kong. RESULTS: The genome structures of D. crassirhizoma and O. japonica have different characteristics including the genome size, the size of each area, gene location, and types. Moreover, the (simple sequence repeats) SSRs of the plastid genomes were more similar to other species in the same genera. Compared with D. fragrans, D. crassirhizoma shows an inversion (approximately 1.6 kb), and O. japonica shows two inversions (1.9 kb and 216 bp). The nucleotide diversity (polymorphism information, Pi) analysis showed that the psbK gene and rpl14-rpl16 region have the highest Pi value in Dryopteris, and the ycf2-CDS3 and rpl14-rpl16 regions show the highest Pi vale in O. japonica. Phylogenetic analyses showed that the two species were grouped in two separate clades from each other, with both individually located with other members of their genus. The marker content of dryocrassin is not found in O. japonica. CONCLUSIONS: The study is the first to identify plastid genome features of D. crassirhizoma and O. japonica. The results may provide a theoretical basis for the identification and the application of the two medically important fern species.

15.
Zhongguo Zhong Yao Za Zhi ; 43(19): 3862-3866, 2018 Oct.
Article in Chinese | MEDLINE | ID: mdl-30453710

ABSTRACT

Fructus Arctii is a traditional Chinese medicine. The main counterfeit species are the seeds of Arctium tomentosum, Onopordum acanthium, Silybum marianum, Saussurea costus, Amorpha fruticosa. Traditional identification methods or molecular barcoding techniques can identify Fructus Arctii and its counterfeit species. However, the identification of the mixture of it and its spurious species is rarely reported. In this paper, we sequenced the ITS2 sequences of Fructus Arctii and 5 kinds of spurious species mix powder by high-throughput sequencing to identify the mixed powder species and providing new ideas for the identification of Fructus Arctii mix powder. The total DNA in mixed powder was extracted, and the ITS2 sequences in total DNA was amplified. Paired-end sequencing was performed on the DNA fragment of the community using the Illumina MiSeq platform. The sequence was analyzed by the software FLASH, QIIME and GraPhlAn etc. The results showed that the high quality ITS2 sequences of 39910 mix samples were obtained from the mixed samples, of which the total ITS2 sequence of the samples genus was 34 935. Phylogenetic analysis showed that the samples contained Fructus Arctii, A. tomentosum, O. acanthium, S. marianum, S. costus and A. fruticosa. Using ITS2 sequences as DNA barcodes, high-throughput sequencing technology can be used to detect the Fructus Arctii and its spurious specie in mixed powder, which can provide reference for the quality control, safe use of medicinal materials of Fructus Arctii and the identification of mixed powder of traditional Chinese medicine.


Subject(s)
Arctium/chemistry , DNA Barcoding, Taxonomic , Drug Contamination , Drugs, Chinese Herbal/standards , High-Throughput Nucleotide Sequencing , Arctium/classification , DNA, Plant/genetics , DNA, Ribosomal Spacer/genetics , Fabaceae , Fruit , Silybum marianum , Onopordum , Phylogeny , Saussurea
16.
Plant J ; 90(5): 1014-1025, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28231382

ABSTRACT

Genetic transformation is a powerful means for the improvement of crop plants, but requires labor- and resource-intensive methods. An efficient method for identifying single-copy transgene insertion events from a population of independent transgenic lines is desirable. Currently, transgene copy number is estimated by either Southern blot hybridization analyses or quantitative polymerase chain reaction (qPCR) experiments. Southern hybridization is a convincing and reliable method, but it also is expensive, time-consuming and often requires a large amount of genomic DNA and radioactively labeled probes. Alternatively, qPCR requires less DNA and is potentially simpler to perform, but its results can lack the accuracy and precision needed to confidently distinguish between one- and two-copy events in transgenic plants with large genomes. To address this need, we developed a droplet digital PCR-based method for transgene copy number measurement in an array of crops: rice, citrus, potato, maize, tomato and wheat. The method utilizes specific primers to amplify target transgenes, and endogenous reference genes in a single duplexed reaction containing thousands of droplets. Endpoint amplicon production in the droplets is detected and quantified using sequence-specific fluorescently labeled probes. The results demonstrate that this approach can generate confident copy number measurements in independent transgenic lines in these crop species. This method and the compendium of probes and primers will be a useful resource for the plant research community, enabling the simple and accurate determination of transgene copy number in these six important crop species.


Subject(s)
Crops, Agricultural/genetics , Oryza/genetics , Plants, Genetically Modified/genetics , Transgenes/genetics , Solanum lycopersicum/genetics , Real-Time Polymerase Chain Reaction , Solanum tuberosum/genetics , Triticum/genetics , Zea mays/genetics
SELECTION OF CITATIONS
SEARCH DETAIL