Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Control Release ; 367: 13-26, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38244843

ABSTRACT

The cGAS-STING pathway and the Mevalonate Pathway are druggable targets for vaccine adjuvant discovery. Manganese (Mn) and bisphosphonates are known to exert adjuvant effects by targeting these two pathways, respectively. This study found the synergistic potential of the two pathways in enhancing immune response. Risedronate (Ris) significantly amplified the Mn adjuvant early antibody response by 166-fold and fortified its cellular immunity. However, direct combination of Mn2+ and Ris resulted in increased adjuvant toxicity (40% mouse mortality). By the combination of doping property of hydroxyapatite (HA) and its high affinity for Ris, we designed Ris-functionalized Mn-HA micro-nanoparticles as an organic-inorganic hybrid adjuvant, named MnHARis. MnHARis alleviated adjuvant toxicity (100% vs. 60% survival rate) and exhibited good long-term stability. When formulated with the varicella-zoster virus glycoprotein E (gE) antigen, MnHARis triggered a 274.3-fold increase in IgG titers and a 61.3-fold surge in neutralization titers while maintaining a better long-term humoral immunity compared to the aluminum adjuvant. Its efficacy spanned other antigens, including ovalbumin, HPV18 VLP, and SARS-CoV-2 spike protein. Notably, the cellular immunity elicited by the group of gE + MnHARis was comparable to the renowned Shingrix®. Moreover, intratumoral co-administration with an anti-trophoblast cell surface antigen 2 nanobody revealed synergistic antitumor capabilities. These findings underscore the potential of MnHARis as a potent adjuvant for augmenting vaccine immune responses and improving cancer immunotherapy outcomes.


Subject(s)
Manganese , Neoplasms , Spike Glycoprotein, Coronavirus , Mice , Humans , Animals , Risedronic Acid , Durapatite , Adjuvants, Immunologic , Vaccines, Subunit , Antigens , Adjuvants, Pharmaceutic , Immunotherapy , Antibodies, Viral
2.
J Control Release ; 365: 369-383, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37972764

ABSTRACT

Micro/Nano-scale particles are widely used as vaccine adjuvants to enhance immune response and improve antigen stability. While aluminum salt is one of the most common adjuvants approved for human use, its immunostimulatory capacity is suboptimal. In this study, we modified risedronate, an immunostimulant and anti-osteoporotic drug, to create zinc salt particle-based risedronate (Zn-RS), also termed particulate risedronate. Compared to soluble risedronate, micronanoparticled Zn-RS adjuvant demonstrated increased recruitment of innate cells, enhanced antigen uptake locally, and a similar antigen depot effect as aluminum salt. Furthermore, Zn-RS adjuvant directly and quickly stimulated immune cells, accelerated the formulation of germinal centers in lymph nodes, and facilitated the rapid production of antibodies. Importantly, Zn-RS adjuvant exhibited superior performance in both young and aged mice, effectively protecting against respiratory diseases such as SARS-CoV-2 challenge. Consequently, particulate risedronate showed great potential as an immune-enhancing vaccine adjuvant, particularly beneficial for vaccines targeting the susceptible elderly.


Subject(s)
Adjuvants, Vaccine , Vaccines , Animals , Mice , Humans , Aged , Risedronic Acid/therapeutic use , Aluminum , Adjuvants, Immunologic , Immunization , Antigens
3.
Front Microbiol ; 13: 854630, 2022.
Article in English | MEDLINE | ID: mdl-35558112

ABSTRACT

The Coronavirus disease 2019 (COVID-19) pandemic presents an unprecedented public health crisis worldwide. Although several vaccines are available, the global supply of vaccines, particularly within developing countries, is inadequate, and this necessitates a need for the development of less expensive, accessible vaccine options. To this end, here, we used the Escherichia coli expression system to produce a recombinant fusion protein comprising the receptor binding domain (RBD) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; residues 319-541) and the fragment A domain of Cross-Reacting Material 197 (CRM197); hereafter, CRMA-RBD. We show that this CRMA-RBD fusion protein has excellent physicochemical properties and strong reactivity with COVID-19 convalescent sera and representative neutralizing antibodies (nAbs). Furthermore, compared with the use of a traditional aluminum adjuvant, we find that combining the CRMA-RBD protein with a nitrogen bisphosphonate-modified zinc-aluminum hybrid adjuvant (FH-002C-Ac) leads to stronger humoral immune responses in mice, with 4-log neutralizing antibody titers. Overall, our study highlights the value of this E. coli-expressed fusion protein as an alternative vaccine candidate strategy against COVID-19.

4.
Sci Transl Med ; 13(606)2021 08 11.
Article in English | MEDLINE | ID: mdl-34285130

ABSTRACT

Multiple safe and effective vaccines that elicit immune responses against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are necessary to respond to the ongoing coronavirus disease 2019 (COVID-19) pandemic. Here, we developed a protein subunit vaccine composed of spike ectodomain protein (StriFK) plus a nitrogen bisphosphonate-modified zinc-aluminum hybrid adjuvant (FH002C). StriFK-FH002C generated substantially higher neutralizing antibody titers in mice, hamsters, and cynomolgus monkeys than those observed in plasma isolated from COVID-19 convalescent individuals. StriFK-FH002C also induced both TH1- and TH2-polarized helper T cell responses in mice. In hamsters, StriFK-FH002C immunization protected animals against SARS-CoV-2 challenge, as shown by the absence of virus-induced weight loss, fewer symptoms of disease, and reduced lung pathology. Vaccination of hamsters with StriFK-FH002C also reduced within-cage virus transmission to unvaccinated, cohoused hamsters. In summary, StriFK-FH002C represents an effective, protein subunit-based SARS-CoV-2 vaccine candidate.


Subject(s)
COVID-19 , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , Cricetinae , Humans , Mice , Protein Subunits , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL