Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Int J Biol Macromol ; 256(Pt 1): 128265, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37984577

ABSTRACT

Consuming a high­sodium diet carries serious health risks and significantly influences the activation state of the renin-angiotensin system (RAS). This study evaluates the protective effect of angiotensin-converting enzyme (ACE) inhibitory peptide IVGFPAYGH on a high­sodium diet-induced liver injury. IVGFPAYGH supplementation increased the activities of liver antioxidase and decreased the levels of liver inflammatory factor in mice fed a high­sodium diet (8 % NaCl). IVGFPAYGH supplementation also reduced liver fatty acid synthesis and promoted fatty acid oxidation, increased the expression of low-density lipoprotein receptor, and improved liver dyslipidemia. Furthermore, IVGFPAYGH supplementation inhibited the activation of the liver RAS via inhibiting ACE activity and reducing angiotensin II levels in mice fed a high­sodium diet. Moreover, IVGFPAYGH supplementation could alter the gut microbiota composition toward a normal gut microbiota composition and increase the abundance of the Lactobacillus genus. IVGFPAYGH supplementation also increased the expression levels of small intestinal tight junction protein and cecum short-chain fatty acids. Thus, IVGFPAYGH supplementation may maintain intestinal homeostasis and improve high­sodium diet-induced liver injury by altering the gut microbiota composition and inhibiting the RAS. IVGFPAYGH is a promising functional ingredient for protecting liver damage caused by a high­sodium diet.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Gastrointestinal Microbiome , Mice , Animals , Renin-Angiotensin System/physiology , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Liver/metabolism , Angiotensin II/metabolism , Fatty Acids/metabolism , Sodium/metabolism , Diet , Diet, High-Fat , Mice, Inbred C57BL
2.
J Sci Food Agric ; 103(6): 2838-2847, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36700254

ABSTRACT

BACKGROUND: Ginger and its extracts have been frequently used in food processing and pharmaceuticals. However, the influence of ginger and its key compounds on benzo[a]pyrene (BaP) production in meat processing has not been investigated. The purpose of this study was to explore the effect of application of ginger and its important active ingredients on BaP formation and the mechanism of inhibiting BaP formation in charcoal-grilled pork sausages. RESULTS: The DPPH scavenging (23.59-59.67%) activity and the inhibition rate of BaP (42.1-68.9%) were significantly increased (P < 0.05) with increasing ginger addition. The active components extracted by supercritical carbon dioxide from ginger were identified by gas chromatography-mass spectrometry and 14 representative compounds (four terpenes, two alcohols, two aldehydes, four phenols and two other compounds, totaling 77.57% of the detected compounds) were selected. The phenolic compounds (eugenol, 6-gingerol, 6-paradol and 6-shogaol, accounting for 29.73% of the total composition) in ginger played a key role and had the strongest inhibitory effect on BaP (61.2-68.2%), whereas four other kinds of compound showed obviously feeble inhibitory activity (6.47-17.9%). Charcoal-grilled sausages with phenolic substances had lower values of thiobarbituric acid-reactive substances, carbonyl and diene (three classic indicators of lipid oxidation) (P < 0.05). CONCLUSION: Ginger and its key compounds could effectively inhibit the formation of BaP in charcoal-grilled pork sausages. Phenolic compounds make the strongest contribution to the inhibition of Bap formation, and the inhibitory mechanism was related to the inhibition of lipid oxidation. © 2023 Society of Chemical Industry.


Subject(s)
Pork Meat , Red Meat , Zingiber officinale , Animals , Swine , Benzo(a)pyrene/analysis , Zingiber officinale/chemistry , Charcoal , Red Meat/analysis , Pork Meat/analysis , Catechols/analysis , Phenols/chemistry , Fatty Alcohols/chemistry , Plant Extracts/chemistry
3.
Food Chem ; 395: 133582, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-35779509

ABSTRACT

This study aimed to investigate the individual effects of rosemary extract and green tea polyphenols on the stability of the soybean oil-myosin emulsions with l-arginine or l-lysine. The results showed that l-arginine or l-lysine increased the physical stability of emulsion in all cases. In the presence of metallic cations, rosemary extract increased the physical stability, while green tea polyphenols decreased the physical stability. l-Arginine or l-lysine retarded the lipid and protein oxidation of emulsion in the absence of metallic cations during storage, but accelerated it in the presence of metallic cations. The two antioxidants delayed l-arginine- or l-lysine-induced lipid and protein oxidation in the presence of metallic cations. The results provide a new method for improving the physical and chemical stability of emulsion sausages in which l-arginine or l-lysine is applied to improve the quality attributes of emulsion sausage.


Subject(s)
Antioxidants , Rosmarinus , Antioxidants/chemistry , Arginine , Emulsions/chemistry , Lysine , Myosins , Plant Extracts/chemistry , Polyphenols/chemistry , Rosmarinus/chemistry , Soybean Oil/chemistry , Tea/chemistry
4.
Food Res Int ; 155: 111095, 2022 05.
Article in English | MEDLINE | ID: mdl-35400467

ABSTRACT

The pathological characteristics of alcohol-associated liver damage (ALD) mainly include liver lipid accumulation, which subsequently leads to alcohol-associated steatohepatitis, fibrosis and cirrhosis. Dietary factors such as alcohol and fat may contribute to the development of ALD. A chronic alcohol-fed mouse model was used to investigate the effect of fatty acids in Jinhua ham on ALD. The fatty acids in Jinhua ham could prevent the occurrence of ALD from chronic alcohol consumption. In addition, the fatty acids in Jinhua ham with liver protective activity were long-chain saturated fatty acids (LCSFAs), including palmitic acid and stearic acid. In contrast, long-chain polyunsaturated fatty acids aggravated the pathogenesis of ALD. Furthermore, the mechanism underlying the prevention of ALD by fatty acids in Jinhua ham was ascribed to increasing relative abundances of Akkermansia muciniphila and Lactobacillus in the gut, which were beneficial to regulating intestinal homeostasis, ameliorating intestinal barrier dysfunction and reducing alcohol-associated hepatitis and oxidative stress damage. This study demonstrated that dietary supplementation with saturated fatty acids could prevent or mitigate ALD by regulating the gut microbiota (GM) and improving the intestinal barrier, while provided a more affordable dietary intervention strategy for the prevention of ALD.


Subject(s)
Fatty Liver, Alcoholic , Gastrointestinal Microbiome , Liver Diseases, Alcoholic , Animals , Ethanol/adverse effects , Fatty Acids/pharmacology , Fatty Liver, Alcoholic/prevention & control , Liver Diseases, Alcoholic/prevention & control , Mice , Mice, Inbred C57BL , Stearic Acids/pharmacology
5.
Molecules ; 27(4)2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35209157

ABSTRACT

Supramolecular oleogel is a soft material with a three-dimensional structure, formed by the self-assembly of low-molecular-weight gelators in oils; it shows broad application prospects in the food industry, environmental protection, medicine, and other fields. Among all the gelators reported, amino-acid-based compounds have been widely used to form organogels and hydrogels because of their biocompatibility, biodegradation, and non-toxicity. In this study, four Nα, Nε-diacyl-l-lysine gelators (i.e., Nα, Nε-dioctanoyl-l-lysine; Nα, Nε-didecanoyl-l-lysine; Nα, Nε-dilauroyl-l-lysine; and Nα, Nε-dimyristoyl-l-lysine) were synthesized and applied to prepare oleogels in four kinds of vegetable oils. Gelation ability is affected not only by the structure of the gelators but also by the composition of the oils. The minimum gel concentration (MGC) increased with the increase in the acyl carbon-chain length of the gelators. The strongest gelation ability was displayed in olive oil for the same gelator. Rheological properties showed that the mechanical strength and thermal stability of the oleogels varied with the carbon-chain length of the gelators and the type of vegetable oil. The microstructure of oleogels is closely related to the carbon-chain length of gelators, regardless of oil type. The highest oil-binding capacity (OBC) was obtained in soybean oil for all four gelators, and Nα, Nε-dimyristoyl-l-lysine showed the best performance for entrapping oils.


Subject(s)
Lysine/chemistry , Plant Oils/chemistry , Chemical Phenomena , Chemistry Techniques, Synthetic , Molecular Structure , Organic Chemicals/chemical synthesis , Organic Chemicals/chemistry , Rheology
6.
Int J Biol Macromol ; 192: 627-634, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34626727

ABSTRACT

The study aimed to obtain chitosan composite films with gratifying physical and functional properties. First, we developed a Pickering emulsion containing clove essential oil (CEO)-loaded nanoparticles with 1:2 (w/w) zein and sodium caseinate (NaCas). We found that in this ratio, the CEO-loaded zein-NaCas (C/ZN) nanoparticles had smaller particle size, proper polydispersity index (PDI) and zeta potential as well as higher encapsulation efficiency. Then, the acquired C/ZN nanoparticles were incorporated into chitosan film at three levels (0.2%, 0.4% and 0.6%), reducing the water vapor permeability to 4.62 × 10-6 g·s-1·m-1·Pa. Also, the tensile strength and break elongation of chitosan films were increased, reaching 38.67 MPa and 1.56%, respectively. The infrared spectroscopy verified that the intermolecular hydrogen bonds exist between chitosan and C/ZN nanoparticles. The chitosan composite films showed a controlled-release property of CEO in 96 h. Finally, the chitosan composite films showed the improved antibacterial property by creating larger inhibition zones against Escherichia coli (3.29 mm) and Staphylococcus aureus (6.15 mm). In general, we improved the water resistance, light blocking, mechanical strength, controlled-release and antibacterial properties of chitosan film with C/ZN nanoparticles. The current edible antibacterial films have great potential on applications for food preservation and food delivery system.


Subject(s)
Biocompatible Materials/chemistry , Chitosan/chemistry , Clove Oil/chemistry , Food Packaging , Oils, Volatile/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Chemical Phenomena , Emulsions , Food Preservation , Materials Testing , Mechanical Phenomena , Nanoparticles/chemistry , Particle Size , Permeability , Spectrum Analysis , Steam
7.
Molecules ; 26(18)2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34577029

ABSTRACT

Among the trace elements, selenium (Se) has great demand as a health supplement. Compared to its other forms, selenium nanoparticles have minor toxicity, superior reactivity, and excellent bioavailability. The present study was conducted to produce selenium nanoparticles (SeNPs) via a biosynthetic approach using probiotic Bacillus subtilis BSN313 in an economical and easy manner. The BSN313 exhibited a gradual increase in Se reduction and production of SeNPs up to 5-200 µg/mL of its environmental Se. However, the capability was decreased beyond that concentration. The capacity for extracellular SeNP production was evidenced by the emergence of red color, then confirmed by a microscopic approach. Produced SeNPs were purified, freeze-dried, and subsequently characterized systematically using UV-Vis spectroscopy, FTIR, Zetasizer, SEM-EDS, and TEM techniques. SEM-EDS analysis proved the presence of selenium as the foremost constituent of SeNPs. With an average particle size of 530 nm, SeNPs were shown to have a -26.9 (mV) zeta potential and -2.11 µm cm/Vs electrophoretic mobility in water. SeNPs produced during both the 24 and 48 h incubation periods showed good antioxidant activity in terms of DPPH and ABST scavenging action at a concentration of 150 µg/mL with no significant differences (p > 0.05). Moreover, 200 µg/mL of SeNPs showed antibacterial reactivity against Escherichia coli ATCC 8739, Staphylococcus aureus ATCC 9027, and Pseudomonas aeruginosa ATCC 25923. In the future, this work will be helpful to produce biogenic SeNPs using probiotic Bacillus subtilis BSN313 as biofactories, with the potential for safe use in biomedical and nutritional applications.


Subject(s)
Bacillus subtilis , Nanoparticles , Selenium , Antioxidants , Dietary Supplements , Particle Size
8.
J Oleo Sci ; 70(8): 1069-1080, 2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34248099

ABSTRACT

The effects of bile salts on the emulsifier adsorption layer play a crucial role in lipid digestion. The current study selected sodium cholate (NaCh) and lecithin as model compounds for bile salts and food emulsifiers, respectively. The interface dilational rheological and emulsification properties of NaCh and lecithin were carried out. The results showed that the NaCh molecules could quickly diffuse from the bulk to interface, which broke the tightly-arranged interfacial layer of lecithin and enhanced the viscoelasticity of interfacial film. As a result, the interfacial adsorption layer, which was originally dominated by the slow relaxation processes within the interface, was transformed into one controlled by the fast molecular diffusion exchange. This accelerated the exchange of materials between the bulk and interface, thereby creating suitable conditions for the interfacial adsorption of lipases, which promoted the digestion process. These results provided a mechanism for the promotion of lipid digestion by bile salts from the perspective of interfacial viscoelasticity and relaxation processes. A deeper understanding of the interfacial behavior of bile salts with emulsifiers would provide a basis for the rational design of interfacial layer for modulating lipid digestion.


Subject(s)
Emulsifying Agents/chemistry , Lecithins/chemistry , Sodium Cholate/chemistry , Adsorption , Diffusion , Digestion , Emulsions/chemistry , Hydrolysis , Lipase/chemistry , Rheology , Surface Tension , Triglycerides/chemistry , Viscosity
9.
ACS Appl Mater Interfaces ; 13(15): 17920-17930, 2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33827214

ABSTRACT

For the design and optimization of near-infrared photothermal nanohybrids, tailoring the energy gap of nanohybrids plays a crucial role in attaining a satisfactory photothermal therapeutic efficacy for cancer and remains a challenge. Herein, we report an electron donor-acceptor effect-induced organic/inorganic nanohybrid with a low energy gap (denoted as ICG/Ag/LDH) by the in situ deposition of Ag nanoparticles onto the CoAl-LDH surface, followed by the coupling of ICG. A combination study verifies that the supported Ag nanoparticles as the electron donor (D) push electrons into the conjugated system of ICG by the electronic interaction between ICG and Ag, while OH groups of LDHs as the electron acceptor (A) pull electrons from the conjugated system of ICG by hydrogen bonding (N···H-O). This induces the formation of the D-A conjugated π-system and has a strong influence on the π-conjugated system of ICG, thus leading to a prominent decrease toward the energy gap and correspondingly an ultra-long redshift (∼115 nm). The resulting ICG/Ag/LDHs show an enhanced photothermal conversion efficiency (∼45.5%) at 808 nm laser exposure, which is ∼1.6 times larger than that of ICG (∼28.4%). Such a high photothermal performance is attributed to the fact that ICG/Ag/LDHs possess a D-π-A hybrid structure and a resulting lower energy gap, thus effectively promoting nonradiative transitions and leading to enhancement of the photothermal effect. Both in vitro and in vivo results confirm the good biocompatible properties and capability of the ICG/Ag/LDHs for NIR-triggered cancer treatment. This research demonstrates a successful paradigm for the rational design and preparation of new nanohybrids through the modulation of electron donor-acceptor effect, which offers a new avenue to achieve efficient phototherapeutic agent for improving the cancer therapeutic outcomes.


Subject(s)
Metal Nanoparticles/chemistry , Nanocomposites/chemistry , Nanocomposites/therapeutic use , Nanomedicine/methods , Organic Chemicals/chemistry , Phototherapy/methods , Silver/chemistry , Electron Transport , Hydrogen Bonding , Surface Properties
10.
Food Res Int ; 141: 110127, 2021 03.
Article in English | MEDLINE | ID: mdl-33641994

ABSTRACT

To addgarlic more conveniently, the substitute-garlic essential oil(GEO)is wildly applied in meat product for flavor improvement. However, the effects of GEOon chemical hazard formation, such as benzo[a]pyrene (BaP), in meat processing have not been studied. This study focused on the inhibitory effect of garlic (0.05-0.15%, w/w), GEO (0.002-0.006%, w/w) and the active sulfide compounds (0.006%, w/w) on the formation of BaP in charcoal-grilled pork sausages. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activity of the garlic, GEO and sulfide compounds was also determined. The results showed that the garlic was efficient in the decrease of DPPH free radicals (14.91-23.39%) and BaP content (37.2-62.3%). GEO was also efficient in scavenging DPPH free radicals (14.17-26.20%) and reducing BaP formation (29.1-57.1%). Gas chromatography-mass spectrometer (GC-MS) analysis identified a total of 41 compounds, of which six major sulfide compounds (allyl methyl sulfide, diallyl sulfide, allyl methyl disulfide, diallyl disulfide, allyl methyl trisulfide and diallyl trisulfide) were screened to assess their inhibition of BaP generation. The BaP inhibition of these sulfide compounds were dependent on the number of sulfur (-S-) and thioallyl group (-S-CH2-CH═CH2); and allyl methyl trisulfide (AMTS) showed the highest BaP inhibition (63.3%). A significant correlation was found between their BaP inhibition and DPPH scavenging activity (Spearman correlation = 0.91, P < 0.001), which indicates that the mechanism of sulfides influencing BaP formation in grilling sausage is related to free radical reaction. Our research gives an insight into the theoretical basis about application of GEO to inhibit BaP during food processing and supports use of GEO as a natural additive in meat products.


Subject(s)
Garlic , Pork Meat , Red Meat , Animals , Benzo(a)pyrene , Charcoal , Sulfides , Swine
11.
J Agric Food Chem ; 69(8): 2557-2563, 2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33617251

ABSTRACT

In this study, modified whey protein hydrolysates (WPH) were obtained after succinic anhydride succinylation and linear dextrin glycation, and emulsion gels were prepared on the basis of unmodified/modified WPH stabilized emulsions with sugar beet pectin (SBP) addition and laccase-catalyzed cross-linking. The influences of emulsifier types and SBP contents on the texture of emulsion gels were estimated. The texture and rheological properties of emulsion gels were characterized. An ideal gel emulsion was formed when the SBP content was 3% (w/w). A uniform network was observed in emulsion gels stabilized by W-L, W-L-S, and W-S-L. In addition, the effect of the emulsifier type on the bioaccessibility of curcumin encapsulated in emulsion gels was investigated and the W-S-L stabilized emulsion gel exhibited the highest curcumin bioaccessibility (65.57%). This study provides a theoretical basis for the development of emulsion gels with different textures by SBP addition and laccase cross-linking as encapsulation delivery systems.


Subject(s)
Beta vulgaris , Curcumin , Catalysis , Emulsions , Gels , Laccase , Pectins , Sugars
12.
Meat Sci ; 175: 108432, 2021 May.
Article in English | MEDLINE | ID: mdl-33453553

ABSTRACT

This study was designed to evaluate changes in color following pork chop supplementation with porcine hemin, astaxanthin and paprika red in response to repeated freeze-thaw processes. Surface color analyses revealed that hemin significantly enhanced the appearance of the pork chops (P < 0.05), and the coloring efficiency of 0.10% hemin was similar to that of 0.20% astaxanthin and 0.08% paprika red. Sensory evaluations conducted on both raw and fried chops showed that hemin and astaxanthin significantly enhanced the overall acceptability of the chops before and after cooking. The color stability of the pork chops was also evaluated, and the results suggested that the hemin-colored chops were the most stable among the three, upon repeated freeze-thaw cycles. The electronic nose showed that the odor of the hemin-colored samples after 0, 3, and 7 freeze-thaw cycles was better than that of the other two groups. In conclusion, hemin may be a superior supplement for the large scale preparation of prepared pork chop.


Subject(s)
Cooking , Freezing , Hemin/chemistry , Pork Meat/analysis , Animals , Capsicum/chemistry , Color , Odorants , Swine , Xanthophylls/chemistry
13.
J Food Biochem ; 44(6): e13227, 2020 06.
Article in English | MEDLINE | ID: mdl-32282084

ABSTRACT

The main aim of this work was to screen, isolate, and identify a probiotic selenium (Se)-resistant strain of Bacillus subtilis, using the 16S rDNA sequencing approach and subsequently optimize conditions. Initially, conditions were enhanced in two univariate optimization environments: shakings flask and a bioreactor. After solving optimization for selected variables, conditions were further optimized using orthogonal array testing. The results were further evaluated by the analysis of variance, in support of Se enrichment. In a bioreactor, based on R and F values, the order of effect of selected conditions on Se enrichment was stirring speed > initial pH > temperature > Se addition time. The stirring speed of the bioreactor was most significant, due to the suspension of reduced Se, as it formed. After absolute optimization, strain BSN313 was able to enrich Se up to 2,123 µg/g of dry weight, which is 7.58 times greater than the baseline Se-resistance. PRACTICAL APPLICATIONS: Systematic studies of selenium enrichment conditions will facilitate the successful development of an organic selenium source and the safe use of Bacillus subtilis strain (BSN313) as a food supplement. Selenium-enriched probiotic bacteria are reported to provide many health benefits to the host, due to antipathogenic, antioxidative, anticarcinogenic, antimutagenic, and anti-inflammatory activities.


Subject(s)
Probiotics , Selenium , Antioxidants , Bacillus subtilis , Dietary Supplements
14.
Molecules ; 24(24)2019 Dec 04.
Article in English | MEDLINE | ID: mdl-31817293

ABSTRACT

The present study describes the production of biosurfactant from isolate B. licheniformis Ali5. Seven different, previously-reported minimal media were screened for biosurfactant production, and two selected media were further optimized for carbon source. Further, various fermentation conditions such as (pH 2-12, temperature 20-50 °C, agitation speed 100-300 rpm, NaCl (0-30 g·L-1) were investigated. The partially purified biosurfactant was characterized by Fourier transform infrared spectroscopy (FTIR) and matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF MS) and found a lipopeptide mixture, similar to lichenysin-A. Biosurfactant reduced surface tension from 72.0 to 26.21 ± 0.3 and interfacial tension by 0.26 ± 0.1 mN.m-1 respectively, biosurfactant yield under optimized conditions was 1 g·L-1, with critical micelle concentration (CMC) of 21 mg·L-1 with high emulsification activity of (E24) 66.4 ± 1.4% against crude oil. Biosurfactant was found to be stable over extreme conditions. It also altered the wettability of hydrophobic surface by changing the contact angle from 49.76° to 16.97°. Biosurfactant efficiently removed (70-79%) motor oil from sand, with an efficiency of more than 2 fold as compared without biosurfactant (36-38%). It gave 32% additional oil recovery over residual oil saturation upon application to a sand-packed column. These results are indicative of potential application of biosurfactant in wettability alteration and ex-situ microbial enhanced oil recovery.


Subject(s)
Bacillus licheniformis/chemistry , Environmental Pollution/analysis , Petroleum/analysis , Sand/chemistry , Surface-Active Agents/chemistry , Bacillus licheniformis/growth & development , Carbon/analysis , Emulsions/chemistry , Hydrocarbons/isolation & purification , Hydrogen-Ion Concentration , Micelles , Phylogeny , Salinity , Spectroscopy, Fourier Transform Infrared , Surface Tension , Temperature , Wettability
15.
Bioresour Technol ; 274: 244-251, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30529328

ABSTRACT

Slaughterhouse wastewater is one of the most harmful agriculture and food industrial wastewaters. The emissions of not fully treated slaughtering wastewater would cause eutrophication of surface water and pollution of groundwater. This study investigated the nutrient removal performance for the enhanced alure-type biological system (E-ATBS) in the full-scale application. During the whole study period, COD, TN and TP removal efficiencies were higher than 97.1%, 90.8% and 90.1%, respectively. The effluent concentrations were lower than the newest effluent standard in China to avoid the discharged water pollution. Partial denitrification (PD)-ANAMMOX was considered as the main approach for anaerobic NH4+-N removal, which helped to guarantee the efficient N removal in the full-scale E-ATBS. Denitrifying P removal and aerobic P uptake ensured the efficient and stable P removal. E-ATBS is a promising technology especially for wastewater treatment in food processing facilities and should be widely popularized.


Subject(s)
Carbon/isolation & purification , Nitrogen/isolation & purification , Phosphorus/isolation & purification , Waste Disposal, Fluid/methods , Wastewater/chemistry , Abattoirs , Bioreactors , China , Denitrification
16.
Talanta ; 165: 412-418, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28153276

ABSTRACT

This paper investigated a new detection method of oxytetracycline (OTC) in aquatic products with ultrasensitive detection limit. The method was constructed on the basis of raman hot spot between gold nanoparticles (AuNPs) (13nm and 80nm diameter respectively) linked by an DNA sequence. The DNA sequence combined with the OTC aptamer including its complementary sequence as well as a stem-loop structure. The raman signal molecule (4-MBA) was modified at the surface of 13nm AuNPs. After the exposure of OTC, the aptamer sequence was preferentially combined with OTC and partially dehybridized with its complementary sequence which led the 13nm AuNPs to get more closer to the 80nm AuNPs. The raman intensity was thus increased for the more enhanced hot spot generated. Under the optimal experimental conditions, the SERS signal was positively related to the OTC concentration with a wide working range of 4.60×10-2-4.60×102fg/mL and the limit of detection (LOD) was as low as 4.35×10-3fg/mL. The recovery rates of fishmeal ranged from 91.29-110.98%. The specificity of this method was further examined, and the results showed that the AuNPs based aptasensor was highly selective. This developed ultrasensitive aptamer-based SERS detection platform suggested that it may be a promising strategy for a variety of sensing applications.


Subject(s)
Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Gold/chemistry , Metal Nanoparticles/chemistry , Oxytetracycline/analysis , Spectrum Analysis, Raman/methods , Limit of Detection
17.
Anal Bioanal Chem ; 407(26): 7907-15, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26297462

ABSTRACT

A novel chemiluminescent aptasensor for the highly sensitive detection of chloramphenicol (CAP) in milk was successfully developed using biotinylated CAP aptamer-functionalized magnetic nanoparticles (MNPs) as capture probes and thiolated hybridized complementary strand-modified N-(4-aminobutyl)-N-ethylisoluminol (ABEI)-functionalized flower-like gold nanostructures (AuNFs) as signal probes. P-iodophenol (PIP) was also added to form an ABEI-H2O2-PIP steady-state chemiluminescence (CL) system. Based on a competitive format, the CL intensity was negatively correlated with the concentration of CAP in the range of 0.01-0.20 ng/mL and the detection limit was 0.01 ng/mL in buffer and 1 ng/mL in milk. The proposed method was successfully applied to measure CAP in milk samples and compared to a commercial ELISA method. The high sensitivity of AuNFs, excellent selectivity and stability of aptamers, and good overall stability of the chemiluminescent bioassay with magnetic separation make them a promising approach for the detection of small molecular illegal additives. Additionally, the high sensitivity, easy operation, and good reproducibility exhibited by the stable chemiluminescent bioassay demonstrate its applicability for the trace detection of CAP in applications, such as animal husbandry.


Subject(s)
Anti-Bacterial Agents/analysis , Aptamers, Nucleotide/chemistry , Chloramphenicol/analysis , Gold/chemistry , Luminol/analogs & derivatives , Milk/chemistry , Nanostructures/chemistry , Animals , Biosensing Techniques/methods , Hydrogen Peroxide/chemistry , Limit of Detection , Luminescent Measurements/methods , Luminol/chemistry , Magnetite Nanoparticles/chemistry , Nanostructures/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL