Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Affiliation country
Publication year range
1.
Chem Biodivers ; 21(5): e202400098, 2024 May.
Article in English | MEDLINE | ID: mdl-38462532

ABSTRACT

Curcumae Radix (CuR) is a traditional Chinese medicine that has been used in China for more than 1,000 years. It has the traditional efficacy of activating blood and relieving pain, promoting qi and relieving depression, clearing heart and cooling blood, and promoting gallbladder and removing jaundice. Based on this, many domestic and foreign scholars have conducted systematic studies on its chemical composition, pharmacological effects, toxicity and quality control. Currently, 250 compounds, mainly including terpenoids and curcuminoids, have been isolated and identified from CuR, which has pharmacological activities, including antitumor, anti-inflammatory and analgesic, antidepressant, hepatoprotective, hemostatic, hematopoietic, and treatment of diabetes mellitus. In modern clinical practice, CuR is widely used in the treatment of tumors, breast hyperplasia, hepatitis, and stroke. However, the generation of toxicity and clinical application of CuR and Caryophylli Flos, the determination of the concoction process of artifacts, the determination of specific Quality Marker, and the establishment of the quality control system of CuR, are problems that need to be solved urgently at present.


Subject(s)
Curcuma , Quality Control , Humans , Curcuma/chemistry , Medicine, Chinese Traditional , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/isolation & purification , Animals , Phytochemicals/chemistry , Phytochemicals/pharmacology , Phytochemicals/isolation & purification
2.
Zhongguo Zhong Yao Za Zhi ; 48(21): 5817-5821, 2023 Nov.
Article in Chinese | MEDLINE | ID: mdl-38114177

ABSTRACT

Eight compounds were isolated from ethyl acetate fraction of 80% ethanol extract of the hulls of Garcinia mangostana by silica gel, Sephadex LH-20 column chromatography, as well as prep-HPLC methods. By HR-ESI-MS, MS, 1D and 2D NMR spectral analyses, the structures of the eight compounds were identified as 16-en mangostenone E(1), α-mangostin(2), 1,7-dihydroxy-2-(3-methy-lbut-2-enyl)-3-methoxyxanthone(3), cratoxyxanthone(4), 2,6-dimethoxy-para-benzoquinone(5), methyl orselinate(6), ficusol(7), and 4-(4-carboxy-2-methoxyphenoxy)-3,5-dimethoxybenzoic acid(8). Compound 1 was a new xanthone, and compound 4 was a xanthone dimer, compound 5 was a naphthoquinone. All compounds were isolated from this plant for the first time except compounds 2 and 3. Cytotoxic bioassay suggested that compounds 1, 2 and 4 possessed moderate cytotoxicity, suppressing HeLa cell line with IC_(50) va-lues of 24.3, 35.5 and 17.1 µmol·L~(-1), respectively. Compound 4 also could suppress K562 cells with an IC_(50) value of 39.8 µmol·L~(-1).


Subject(s)
Antineoplastic Agents , Garcinia mangostana , Garcinia , Xanthones , Humans , Garcinia mangostana/chemistry , HeLa Cells , Magnetic Resonance Spectroscopy , Xanthones/pharmacology , Garcinia/chemistry , Plant Extracts/chemistry , Molecular Structure
3.
Zhongguo Zhong Yao Za Zhi ; 48(12): 3287-3293, 2023 Jun.
Article in Chinese | MEDLINE | ID: mdl-37382013

ABSTRACT

This paper aimed to study the chemical constituents from the root bark of Schisandra sphenanthera. Silica, Sephadex LH-20 and RP-HPLC were used to separate and purify the 80% ethanol extract of S. sphenanthera. Eleven compounds were identified by ~1H-NMR, ~(13)C-NMR, ESI-MS, etc., which were 2-[2-hydroxy-5-(3-hydroxypropyl)-3-methoxyphenyl]-propane-1,3-diol(1), threo-7-methoxyguaiacylglycerol(2),4-O-(2-hydroxy-1-hydroxymethylethyl)-dihydroconiferylalcohol(3), morusin(4), sanggenol A(5), sanggenon I(6), sanggenon N(7), leachianone G(8),(+)-catechin(9), epicatechin(10), and 7,4'-dimethoxyisoflavone(11). Among them, compound 1 was a new compound, and compounds 2-9 were isolated from S. sphenanthera for the first time. Compounds 2-11 were subjected to cell viability assay, and the results revealed that compounds 4 and 5 had potential cytotoxicity, and compound 4 also had potential antiviral activity.


Subject(s)
Catechin , Schisandra , Plant Bark , Antiviral Agents , Biological Assay , Phenols
4.
Zhongguo Zhong Yao Za Zhi ; 48(24): 6676-6681, 2023 Dec.
Article in Chinese | MEDLINE | ID: mdl-38212027

ABSTRACT

Nine compounds were isolated from the 90% ethanol extract of Salacia polysperma by silica gel, Sephadex LH-20 column chromatography, together with preparative HPLC methods. Based on HR-ESI-MS, MS, 1D and 2D NMR spectral analyses, the structures of the nine compounds were identified as 28-hydroxy wilforlide B(1), wilforlide A(2), 1ß,3ß-dihydroxyurs-9(11),12-diene(3),(-)-epicatechin(4),(+)-catechin(5),(-)-4'-O-methyl-ent-galloepicatechin(6), 3-hydroxy-1-(4-hydroxy-3-methoxy-phenyl)propan-1-one(7),(-)-(7S,8R)-4-hydroxy-3,3',5'-trimethoxy-8',9'-dinor-8,4'-oxyneoligna-7,9-diol-7'-aldehyde(8), and vanillic acid(9). Compound 1 is a new oleanane-type triterpene lactone. Compounds 1, 3, 4, 7-9 were isolated from the Salacia genus for the first time. All compounds were assayed for their α-glucosidase inhibitory activity. The results suggested that compound 8 exhibited moderate α-glucosidase inhibitory activity, with an IC_(50) value of 37.2 µmol·L~(-1), and the other compounds showed no α-glucosidase inhibitory activity.


Subject(s)
Salacia , Triterpenes , Salacia/chemistry , alpha-Glucosidases , Triterpenes/pharmacology , Magnetic Resonance Spectroscopy , Ethanol , Molecular Structure
5.
Article in English | MEDLINE | ID: mdl-34434246

ABSTRACT

BACKGROUND: Panax notoginseng saponins (PNS) have been deemed effective herb compounds for treating ischaemic stroke (IS) and improving the quality of life of IS patients. This study aimed to investigate the underlying mechanisms of PNS in the treatment of IS based on network pharmacology. METHODS: PNS were identified from the Traditional Chinese Medicine System Pharmacology (TCMSP) database, and their possible targets were predicted using the PharmMapper database. IS-related targets were identified from the GeneCards database, OMIM database, and DisGeNET database. A herb-compound-target-disease network was constructed using Cytoscape, and protein-protein interaction (PPI) networks were established with STRING. GO enrichment and KEGG pathway analysis were performed using DAVID. The binding of the compounds and key targets was validated by molecular docking studies using AutoDock Vina. The neuroprotective effect of TFCJ was substantiated in terms of oxidative stress (superoxide dismutase, glutathione peroxidase, catalase, and malondialdehyde) and the levels of IGF1/PI3K/Akt pathway proteins. RESULTS: A total of 375 PNS targets and 5111 IS-related targets were identified. Among these targets, 241 were common to PNS, and IS network analysis showed that MAPK1, AKT1, PIK3R1, SRC, MAPK8, EGFR, IGF1, HRAS, RHOA, and HSP90AA1 are key targets of PNS against IS. Furthermore, GO and KEGG enrichment analysis indicated that PNS probably exert therapeutic effects against IS by regulating many pathways, such as the Ras, oestrogen, FoxO, prolactin, Rap1, PI3K-Akt, insulin, PPAR, and thyroid hormone signalling pathways. Molecular docking studies further corroborated the experimental results.The network pharmacology results were further verified by molecular docking and in vivo experiments. CONCLUSIONS: The ameliorative effects of PNS against IS were predicted to be associated with the regulation of the IGF1-PI3K-Akt signalling pathway. Ginsenoside Re and ginsenoside Rb1 may play an important role in the treatment of IS.

SELECTION OF CITATIONS
SEARCH DETAIL