Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
CNS Neurosci Ther ; 28(5): 635-647, 2022 05.
Article in English | MEDLINE | ID: mdl-35174644

ABSTRACT

The incidence and disability rate of spinal cord injury (SCI) worldwide are high, imposing a heavy burden on patients. Considerable research efforts have been directed toward identifying new strategies to effectively treat SCI. Governor Vessel electro-acupuncture (GV-EA), used in traditional Chinese medicine, combines acupuncture with modern electrical stimulation. It has been shown to improve the microenvironment of injured spinal cord (SC) by increasing levels of endogenous neurotrophic factors and reducing inflammation, thereby protecting injured neurons and promoting myelination. In addition, axons extending from transplanted stem cell-derived neurons can potentially bridge the two severed ends of tissues in a transected SC to rebuild neuronal circuits and restore motor and sensory functions. However, every single treatment approach to severe SCI has proven unsatisfactory. Combining different treatments-for example, electro-acupuncture (EA) with adult stem cell transplantation-appears to be a more promising strategy. In this review, we have summarized the recent progress over the past two decades by our team especially in the use of GV-EA for the repair of SCI. By this strategy, we have shown that EA can stimulate the nerve endings of the meningeal branch. This would elicit the dorsal root ganglion neurons to secrete excess amounts of calcitonin gene-related peptide centrally in the SC. The neuropeptide then activates the local cells to secrete neurotrophin-3 (NT-3), which mediates the survival and differentiation of donor stem cells overexpressing the NT-3 receptor, at the injury/graft site of the SC. Increased local production of NT-3 facilitates reconstruction of host neural tissue such as nerve fiber regeneration and myelination. All this events in sequence would ultimately strengthen the cortical motor-evoked potentials and restore the motor function of paralyzed limbs. The information presented herein provides a basis for future studies on the clinical application of GV-EA and adult stem cell transplantation for the treatment of SCI.


Subject(s)
Acupuncture Therapy , Electroacupuncture , Spinal Cord Injuries , Animals , Humans , Nerve Regeneration/physiology , Rats , Rats, Sprague-Dawley , Spinal Cord , Spinal Cord Injuries/therapy , Stem Cell Transplantation
2.
CNS Neurosci Ther ; 27(7): 776-791, 2021 07.
Article in English | MEDLINE | ID: mdl-33763978

ABSTRACT

AIMS: This study was aimed to investigate whether electroacupuncture (EA) would increase the secretion of neurotrophin-3 (NT-3) from injured spinal cord tissue, and, if so, whether the increased NT-3 would promote the survival, differentiation, and migration of grafted tyrosine kinase C (TrkC)-modified mesenchymal stem cell (MSC)-derived neural network cells. We next sought to determine if the latter would integrate with the host spinal cord neural circuit to improve the neurological function of injured spinal cord. METHODS: After NT-3-modified Schwann cells (SCs) and TrkC-modified MSCs were co-cultured in a gelatin sponge scaffold for 14 days, the MSCs differentiated into neuron-like cells that formed a MSC-derived neural network (MN) implant. On this basis, we combined the MN implantation with EA in a rat model of spinal cord injury (SCI) and performed immunohistochemical staining, neural tracing, electrophysiology, and behavioral testing after 8 weeks. RESULTS: Electroacupuncture application enhanced the production of endogenous NT-3 in damaged spinal cord tissues. The increase in local NT-3 production promoted the survival, migration, and maintenance of the grafted MN, which expressed NT-3 high-affinity TrkC. The combination of MN implantation and EA application improved cortical motor-evoked potential relay and facilitated the locomotor performance of the paralyzed hindlimb compared with those of controls. These results suggest that the MN was better integrated into the host spinal cord neural network after EA treatment compared with control treatment. CONCLUSIONS: Electroacupuncture as an adjuvant therapy for TrkC-modified MSC-derived MN, acted by increasing the local production of NT-3, which accelerated neural network reconstruction and restoration of spinal cord function following SCI.


Subject(s)
Electroacupuncture/methods , Mesenchymal Stem Cells/metabolism , Nerve Net/metabolism , Nerve Regeneration/physiology , Neurotrophin 3/biosynthesis , Receptor, trkC/administration & dosage , Spinal Cord Injuries/metabolism , Animals , Animals, Newborn , Coculture Techniques , Female , Neurotrophin 3/genetics , Rats , Rats, Sprague-Dawley , Rats, Transgenic , Schwann Cells/metabolism , Schwann Cells/transplantation , Spinal Cord Injuries/pathology , Spinal Cord Injuries/therapy
3.
Stem Cell Reports ; 12(2): 274-289, 2019 02 12.
Article in English | MEDLINE | ID: mdl-30661994

ABSTRACT

The hostile environment of an injured spinal cord makes it challenging to achieve higher viability in a grafted tissue-engineered neural network used to reconstruct the spinal cord circuit. Here, we investigate whether cell survival and synaptic transmission within an NT-3 and TRKC gene-overexpressing neural stem cell-derived neural network scaffold (NN) transplanted into transected spinal cord could be promoted by electroacupuncture (EA) through improving the microenvironment. Our results showed that EA facilitated the cell survival, neuronal differentiation, and synapse formation of a transplanted NN. Pseudorabies virus tracing demonstrated that EA strengthened synaptic integration of the transplanted NN with the host neural circuit. The combination therapy also promoted axonal regeneration, spinal conductivity, and functional recovery. The findings highlight EA as a potential and safe supplementary therapeutic strategy to reinforce the survival and synaptogenesis of a transplanted NN as a neuronal relay to bridge the two severed ends of an injured spinal cord.


Subject(s)
Neural Stem Cells/physiology , Neurons/physiology , Spinal Cord Injuries/physiopathology , Spinal Cord/physiology , Animals , Cell Differentiation/physiology , Electroacupuncture/methods , Female , Nerve Regeneration/physiology , Rats , Rats, Sprague-Dawley , Recovery of Function/physiology , Synapses/physiology , Synaptic Transmission/physiology
SELECTION OF CITATIONS
SEARCH DETAIL