Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Biotechnol Lett ; 46(1): 55-68, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38064040

ABSTRACT

OBJECTIVES: Enhance the androstadienedione (Androst-1,4-diene-3,17-dione, ADD) production of rough morphotype Mycolicibacterium neoaurum R by repeated-batch fermentation of immobilized cells. RESULTS: M. neoaurum R was a rough colony morphotype variant, obtained from the routine plating of smooth M. neoaurum strain CICC 21097. M. neoaurum R showed rougher cell surface and aggregated in broth. The ADD production of M. neoaurum R was notably lower than that of M. neoaurum CICC 21097 during the free cell fermentation, but the yield gap could be erased after proper cell immobilization. Subsequently, repeated-batch fermentation of immobilized M. neoaurum R was performed to shorten the production cycle and enhance the bio-production efficiency of ADD. Through the optimization of the immobilization carriers and the co-solvents for phytosterols, the ADD productivity of M. neoaurum R immobilized by semi-expanded perlite reached 0.075 g/L/h during the repeated-batch fermentation for 40 days. CONCLUSIONS: The ADD production of the rough-type M. neoaurum R was notably enhanced by the immobilization onto semi-expanded perlite. Moreover, the ADD batch yields of M. neoaurum R immobilized by semi-expanded perlite were maintained at high levels during the repeated-batch fermentation.


Subject(s)
Mycobacteriaceae , Phytosterols , Silicon Dioxide , Phytosterols/metabolism , Mycobacteriaceae/metabolism , Aluminum Oxide/metabolism
2.
Appl Biochem Biotechnol ; 195(1): 432-450, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36087232

ABSTRACT

The enzymatic production of biodiesel from waste cooking oils (WCOs) offers a green and sustainable solution for the liquid fuel manufacture as well as waste resource recovery. In present study, liquid lipase was used to simplify the catalysis process, thereby reducing biodiesel production costs. An engineered Escherichia coli expressing Geobacillus thermocatenulatus lipase 2 (GTL2) was screened at an enzyme activity of 6.96 U/mg, after evaluating the propagating stability of the recombinant plasmids exceeding 86.11%. Through the beneficial feeding strategy and effective pH control, high-level production of GTL2 by fed-batch fermentation was achieved with an enzyme activity of 434.32 U/mg, which was almost 62 times that of shake flask fermentation. In addition, liquid GTL2 was used to prepare fatty acid methyl esters (FAMEs) using WCOs. The effects of the reaction time, catalyst loading, temperature, and methanol-to-oil molar ratio on FAMEs production using WCOs were explored, and a maximum FAMEs yield of 96.62% was achieved under optimized conditions. These results indicate that liquid GTL2 is a promising biocatalyst for efficient utilization of WCOs in the synthesis of biodiesel and provide a novel enzymatic process for biodiesel reducing the cost of production.


Subject(s)
Biofuels , Lipase , Lipase/chemistry , Fermentation , Escherichia coli/genetics , Escherichia coli/metabolism , Esterification , Enzymes, Immobilized/chemistry , Oils , Catalysis , Cooking , Plant Oils/chemistry
3.
Biotechnol Appl Biochem ; 69(5): 1812-1820, 2022 Oct.
Article in English | MEDLINE | ID: mdl-34486738

ABSTRACT

Due to its simple, less by-product and environment friendly properties, enzymatic transesterification of oil with short-chain alcohol to biodiesel, fatty acid methyl esters (FAMEs) is considered to be a promising way of green production and has attracted much attention. In this study, FAMEs were synthesized by an enzymatic method with recombinant lipase as catalysts. A thermophilic Bacillus thermocatenulatus lipase 2 (BTL2) was overexpressed in Escherichia coli BL21(DE3) through relative and quantitative analysis using real-time quantitative PCR. The results suggested that the BTL2 gene was overexpressed in E. coli at the mRNA level, and the recombinant strain harboring a high-copy number vectors was selected and applied to fermentation to produce BTL2 with enzyme activity of 35.54 U/mg cells. The recombinant BTL2 solution exhibited excellent resistance to neutral pH, high temperature, and organic solvents after a certain treatment. Finally, the effects of enzymatic transesterification for preparing biodiesel were studied, using rapeseed oil as raw material, as well as BTL2 solution as catalysts, which resulted in 86.04% yield of FAMEs under 50°C for 36 h. The liquid BTL2 was directly used to prepare FAMEs at a higher temperature efficiently, making the thermophilic BTL2 had the potential application value in biodiesel reproduction subsequently.


Subject(s)
Biofuels , Lipase , Lipase/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Rapeseed Oil , Fermentation , Hot Temperature , Fatty Acids/chemistry
4.
J Biosci Bioeng ; 126(5): 644-648, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29801764

ABSTRACT

The high cost of large-scale cultivation of microalgae has limited their industrial application. This study investigated the potential use of mixed biogas slurry and municipal wastewater to cultivate microalgae. Pig biogas slurry as the sole nutrient supplement, was assessed for the cultivation of Chlorella zofingiensis in municipal wastewater. Batch culture of various ratios of pig biogas slurry and municipal wastewater were compared. The characteristics of algal growth and lipid production were analyzed, and the removal rates of nitrogen and phosphate were examined. Results indicate that 8% pig bio-gas slurry in municipal wastewater, had a significant effect on microalgal growth. C. zofingiensis, with 2.5 g L-1 biomass, 93% total nitrogen and 90% total phosphorus removal. Lipid content was improved by 8% compared to BG11 medium. These findings show that mixing pig biogas slurry and municipal wastewater, without additional nutrition sources, allows efficient cultivation of C. zofingiensis. This is of high research and industrial significance, allowing cultivation of C. zofingiensis in mixed waste culture solution without additional nutrition sources.


Subject(s)
Batch Cell Culture Techniques/methods , Bioelectric Energy Sources , Biofuels , Chlorella , Wastewater/microbiology , Animals , Biomass , Chlorella/growth & development , Chlorella/metabolism , Cities , Lipids/biosynthesis , Local Government , Microalgae/growth & development , Microalgae/metabolism , Nitrogen/analysis , Phosphorus/analysis , Swine , Waste Disposal Facilities
5.
Water Sci Technol ; 71(10): 1562-8, 2015.
Article in English | MEDLINE | ID: mdl-26442499

ABSTRACT

The micralgae-based biofuel obtained from dairy wastewater (DWW) is considered a promising source of energy. However, this process consumes water due to the concentration of wastewater being normally too high for some micoralgae cultivation, and dilution is always needed. In this work, the cultivation of microalgae has been examined in non-recirculated water (NR) and recirculated water systems (R). The growth of Chlorella zofingiensis and the nutrient removal of DWW have been recorded. The comparison indicates the R had a little more advantage in biomass and lipid output (1.55, 0.22 g, respectively) than the NR (1.51, 0.20 g, respectively). However, the total chemical oxygen demand (COD), total Kjeldahl nitrogen (TKN), and total phosphorus (TP) removals of the R were lower than those of the NR system during the culture. The highest removal of total COD, TKN, and TP were 85.05%, 93.64%, and 98.45%, respectively. Furthermore, no significant difference has been observed in the higher heating value and lipid content of the biomass of the R and NR. The results show the R can save 30% of the total water input during the culture. All above results indicate the R system has great potential in industry.


Subject(s)
Biotechnology/instrumentation , Chlorella/growth & development , Microalgae/growth & development , Wastewater/analysis , Water/analysis , Biodegradation, Environmental , Biofuels , Biological Oxygen Demand Analysis , Biomass , Chlorella/metabolism , Microalgae/metabolism , Nitrogen/analysis , Phosphorus/analysis
6.
Bioresour Technol ; 198: 165-71, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26386419

ABSTRACT

The aim of this research was to study the effect of phosphorus supply on starch and lipid production under nitrogen starvation using Chlorella sp. as a model. High phosphate level had marginal effect on cell density but increased biomass growth. Massive phosphorus was assimilated quickly and mainly stored in the form of polyphosphate. The algal cells ceased phosphorus uptake when intracellular phosphorus reached a certain level. 5mM phosphate in the culture rendered a 16.7% decrease of starch synthesis and a 22.4% increase of lipid synthesis relative to low phosphate (0.17 mM). It is plausible that phosphate can regulate carbon partitioning between starch and lipid synthesis pathway by influencing ADP-glucose pyrophosphorylase activity. Moreover, high phosphate concentration enhanced the abundance of oleic acid, improving oil quality for biodiesel production. It is a promising cultivation strategy by integration of phosphorus removal from wastewater with biodiesel production for this alga.


Subject(s)
Biofuels , Chlorella/metabolism , Lipids , Nitrogen/metabolism , Phosphorus/metabolism , Starch/metabolism , Biomass , Polyphosphates/metabolism , Wastewater
7.
Appl Biochem Biotechnol ; 172(2): 1121-30, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24142385

ABSTRACT

There is potential in the utilization of microalgae for the purification of wastewater as well as recycling the resource in the wastewater to produce biodiesel. The large-scale cultivation of microalgae requires pretreatment of the wastewater to eliminate bacteria and protozoa. This procedure is costly and complex. In this study, two methods of pretreatment, UV irradiation, and sodium hypochlorite (NaClO), in various doses and concentrations, were tested in the dairy wastewater. Combining the efficiency of biodiesel production, we proposed to treat the dairy wastewater with NaClO in the concentration of 30 ppm. In this condition, The highest biomass productivity and lipid productivity of Chlorella vulgaris reached 0.450 g L(-1) day(-1) and 51 mg L(-1) day(-1) after a 4-day cultivation in the dairy wastewater, respectively.


Subject(s)
Chlorella vulgaris/growth & development , Chlorella vulgaris/radiation effects , Dairying , Sodium Hypochlorite/pharmacology , Ultraviolet Rays , Wastewater/microbiology , Biomass , Chlorella vulgaris/drug effects , Esters/metabolism , Fatty Acids/metabolism , Nitrogen/isolation & purification , Phosphorus/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL