Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Chemosphere ; 333: 138949, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37196789

ABSTRACT

In recent years, Poyang Lake has been affected by severe agricultural non-point source (NPS) pollution, a global water pollution problem. The most recognized and effective control measure for agricultural NPS pollution is the strategic selection and placement of best management practices (BMPs) for critical source areas (CSAs). The present study employed the Soil and Water Assessment Tool (SWAT) model to identify CSAs and evaluate the effectiveness of different BMPs in reducing agricultural NPS pollutants in the typical sub-watersheds of the Poyang Lake watershed. The model performed well and satisfactorily in simulating the streamflow and sediment yield at the outlet of the Zhuxi River watershed. The results indicated that urbanization-oriented development strategies and the Grain for Green program (returning the grain plots to forestry) had certain effects on the land-use structure. The proportion of cropland in the study area decreased from 61.45% (2010) to 7.48% (2018) in response to the Grain for Green program, which was mainly converted to forest land (58.7%) and settlements (36.8%). Land-use type changes alter the occurrence of runoff and sediment, which further affect the nitrogen (N) and phosphorus (P) loads since sediment load intensity is a key factor affecting the P load intensity. Vegetation buffer strips (VBSs) proved the most effective BMPs for NPS pollutant reduction, and the cost of 5-m VBSs proved the lowest. The effectiveness of each BMP in reducing N/P load ranked as follows: VBS > grassed river channels (GRC) > 20% fertilizer reduction (FR20) > no-tillage (NT) > 10% fertilizer reduction (FR10). All combined BMPs had higher N and P removal efficiencies than the individual measures. We recommend combining FR20 and VBS-5m or NT and VBS-5m, which could achieve nearly 60% pollutant removal. Depending on the site conditions, the choice between FR20+VBS and NT + VBS is flexible for targeted implementation. Our findings may contribute to the effective implementation of BMPs in the Poyang Lake watershed and provide theoretical support and practical guidance for agricultural authorities to perform and direct agricultural NPS pollution prevention and control.


Subject(s)
Environmental Pollutants , Non-Point Source Pollution , Cost-Benefit Analysis , Rivers , Fertilizers , Lakes , Agriculture/methods , Water Pollution/prevention & control , Water Pollution/analysis , Phosphorus/analysis , Nitrogen/analysis , Environmental Monitoring/methods
2.
Drug Des Devel Ther ; 16: 509-520, 2022.
Article in English | MEDLINE | ID: mdl-35250263

ABSTRACT

BACKGROUND: Studies have found that α-mangostin (MG) can relieve experimental arthritis by activating cholinergic anti-inflammatory pathway (CAP). It affects the polarization of macrophages and the balance of related immune cell subpopulations, but the specific mechanism is still unclear. It has been found that silent information regulator 1 (SIRT1) is closely related to macrophage activity. The purpose of this study is to explore the mechanism of MG intervening in macrophage polarization during treatment of early adjuvant-induced (AIA) rats through the CAP-SIRT1 pathway. METHODS: We investigated the polarization of M1 macrophages and the differentiation of Th1 in AIA rats by flow cytometry. Activity of acetylcholinesterase (AChE) and the level of nicotinic adenine dinucleotide (NAD+) in serum were also detected, and immunohistochemical was used to detect the levels of α7 nicotinic cholinergic receptor (α7nAChR) and SIRT1. Then in macrophages, the molecular mechanism of MG regulating the abnormal activation of macrophages in rats with early AIA through the CAP-SIRT1 pathway was studied. RESULTS: MG can significantly inhibit the polarization of M1 macrophages and the differentiation of Th1 in AIA rats in the acute phase of inflammation. MG can significantly inhibit the activity of AChE and increase the level of NAD+, thereby further up-regulated the expression levels of α7nAChR and SIRT1. Meanwhile, MG inhibited nuclear factor-κB (NF-κB)-mediated inflammation by activating the CAP-SIRT1 pathway in macrophages. CONCLUSION: In summary, the stimulation of MG induced CAP activation, which up-regulated SIRT1 signal, and thereby inhibited M1 polarization through the NF-κB pathway, and improved the pathological immune environment of early-stage AIA rats.


Subject(s)
Arthritis, Experimental , Sirtuin 1 , Acetylcholinesterase/metabolism , Animals , Arthritis, Experimental/chemically induced , Arthritis, Experimental/drug therapy , Arthritis, Experimental/metabolism , Macrophages/metabolism , NF-kappa B/metabolism , Rats , Sirtuin 1/metabolism , Xanthones
3.
J Environ Manage ; 297: 113258, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34298349

ABSTRACT

An analysis of the influence of water regime on the metal accumulation processes of wetland plants can improve the efficiency of phytoremediation. However, few studies have clearly explored the mechanism of influence of water regime on the process of accumulation of metals by the dominant vegetation in Poyang Lake wetland, the largest freshwater lake in China. The aim of this study was to investigate the influence of water regime (Flooding condition [FC], Dry condition [DC] and alternate dry and flooding condition [DFC]) on the accumulation of cadmium (Cd) by Artemisia selengensis Turcz. ex Bess., a dominant plant in the Poyang Lake wetland. The results indicated that FC treatment significantly enhanced the accumulation of Cd by Artemisia roots compared with DFC and DC treatments. In addition, the DFC treatment significantly increased the translocation of Cd from roots to shoots compared with the FC treatment. A multivariate statistical analysis indicated that the rhizosphere Cd fraction, iron plaque on the root surface and rhizosphere pH directly or indirectly significantly influence the process of accumulation of Cd. The conversion of exchangeable fraction to Fe/Mn oxide bound and organic fraction under the DFC and FC treatments decreased the accumulation of Cd in Artemisia. The formation of increased amounts of iron plaque under the FC treatment may enhance the accumulation of Cd in roots, while it may reduce the translocation of Cd to aboveground tissues. In addition, a higher rhizosphere pH under the FC treatment may promote accumulation of Cd in the root by inducing formation of iron plaque. Similarly, compared with the FC treatment, a lower rhizosphere pH and iron plaque can induce the processes of Cd translocation under the DFC treatment. Based on the bioaccumulation factor, translocation factor and the ratio of root/aerial Cd content, treatment with DC benefited the phytoextraction of Cd, while treatment with DFC and FC enhanced the phytostabilization of Cd by Artemisia. This study provides valuable information for deeply understanding the resilience of wetland ecosystems and for enhancing the phytoremediation with wetland plants using water management.


Subject(s)
Artemisia , Soil Pollutants , Cadmium/analysis , Ecosystem , Lakes , Plant Roots/chemistry , Soil , Soil Pollutants/analysis , Water , Wetlands
SELECTION OF CITATIONS
SEARCH DETAIL