Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Anim Sci ; 1022024 Jan 01.
Article in English | MEDLINE | ID: mdl-38266070

ABSTRACT

Nisin (Ni) is a polypeptide bacteriocin produced by lactic streptococci (probiotics) that can inhibit the majority of gram-positive bacteria, and improve the growth performance of broilers, and exert antioxidative and anti-inflammatory properties. The present study investigated the potential preventive effect of Nisin on necrotic enteritis induced by Clostridium perfringens (Cp) challenge. A total of 288 Arbor Acres broiler chickens of 1-d-olds were allocated using 2 × 2 factorial arrangement into four groups with six replicates (12 chickens per replicate), including: (1) control group (Con, basal diet), (2) Cp challenge group (Cp, basal diet + 1.0 × 108 CFU/mL Cp), (3) Ni group (Ni, basal diet + 100 mg/kg Ni), and (4) Ni + Cp group (Ni + Cp, basal diet + 100 mg/kg Ni + 1.0 × 108 CFU/mL Cp). The results showed that Cp challenge decreased the average daily gain (ADG) of days 15 to 21 (P<0.05) and increased interleukin-6 (IL-6) content in the serum (P < 0.05), as well as a significant reduction in villus height (VH) and the ratio of VH to crypt depth (VCR) (P<0.05) and a significant increase in crypt depth (CD) of jejunum (P<0.05). Furthermore, the mRNA expressions of Occludin and Claudin-1 were downregulated (P<0.05), while the mRNA expressions of Caspase3, Caspase9, Bax, and Bax/Bcl-2 were upregulated (P<0.05) in the jejunum. However, the inclusion of dietary Ni supplementation significantly improved body weight (BW) on days 21 and 28, ADG of days 15 to 21 (P<0.05), decreased CD in the jejunum, and reduced tumor necrosis factor-α (TNF-α) content in the serum (P<0.05). Ni addition upregulated the mRNA levels of Claudin-1 expression and downregulated the mRNA expression levels of Caspase9 in the jejunum (P<0.05). Moreover, Cp challenge and Ni altered the cecal microbiota composition, which manifested that Cp challenge decreased the relative abundance of phylum Fusobacteriota and increased Shannon index (P<0.05) and the trend of phylum Proteobacteria (0.05

Necrotic enteritis (NE), a severe digestive disorder in broiler chickens caused by Clostridium perfringens (Cp), a gram-positive bacterium, is a widespread issue in the global poultry industry, leading to significant economic losses. Nisin (Ni), a polypeptide bacteriocin produced by probiotic lactic streptococci, has been found to enhance daily weight gain and feed intake, while also exhibiting inhibitory effects on gram-positive bacteria and anti-inflammatory properties. In this study, a NE infection model in broilers was established to examine the potential preventive effects of Ni. These results demonstrated that Cp challenge reduced growth performance, caused inflammatory responses and intestinal apoptosis, damaged intestinal morphology and barrier function, and was accompanied by changes in the composition of the gut microbiota. Dietary supplementation with Ni improved growth performance and protected intestine against Cp challenge-induced damage in broilers. As a result, Ni may be a potential safe and effective additive for NE prevention in broiler production.


Subject(s)
Clostridium Infections , Nisin , Poultry Diseases , Animals , Clostridium perfringens , Chickens , Intestines , Clostridium Infections/prevention & control , Clostridium Infections/veterinary , Clostridium Infections/microbiology , Nisin/pharmacology , Claudin-1 , bcl-2-Associated X Protein/pharmacology , Diet/veterinary , RNA, Messenger/genetics , Immunity , Poultry Diseases/microbiology , Dietary Supplements , Animal Feed/analysis
2.
Poult Sci ; 97(4): 1229-1237, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29361047

ABSTRACT

The goal of this experiment was to examine effects of diets supplemented with exogenous inosine monophosphate (IMP) on the growth performance, flavor compounds, enzyme activity and gene expression of chicken. A total of 1,500 healthy, 1-day-old male 3-yellow chickens were used for a 52-d experimental period. Individuals were randomly divided into 5 groups (group I, II, III, IV, V) with 6 replicates per group, and fed a basal diet supplemented with 0.0, 0.05, 0.1, 0.2, and 0.3% IMP, respectively. There was no significant response to the increasing dietary IMP level in average daily feed intake (ADFI), average daily gain (ADG), and feed:gain ratio (F/G) (P ≥ 0.05). IMP content of the breast and thigh muscle showed an exponential and linear response to the increasing dietary IMP level (P < 0.05), the highest IMP content was obtained when the diet with 0.3% and 0.2% exogenous IMP was fed. There were significant effects of IMP level in diet on free amino acids (FAA) (exponential, linear and quadratic effect, P < 0.05) and delicious amino acids (DAA) (quadratic effect, P < 0.01) content in breast muscle. FAA and DAA content in thigh muscle showed an exponential and linear response (P < 0.05), and quadratic response (P < 0.01) to the increasing dietary IMP level, the highest FAA and DAA content was obtained when the diet with 0.2% exogenous IMP was fed. Dietary IMP supplementation had a quadratic effect on 5΄-NT and the alkaline phosphatase (ALP) enzyme activity in the breast muscle (P < 0.05), and the adenosine triphosphate (ATP) enzyme activity in the thigh muscles increased exponentially and linearly with increasing IMP level in diet (exponential effect, P = 0.061; linear effect, P = 0.059). Cyclohydrolase (ATIC) gene expression in thigh muscle had a quadratic response to the increasing dietary IMP level (P < 0.05), 0.2% exogenous IMP group had the highest (AMPD1) gene expression of the breast muscle and ATIC gene expression of the thigh muscle. These results indicate that dietary IMP did not affect the growth performance of chicken, the diet with 0.2 to 0.3% exogenous IMP is optimal to improve the meat flavor quality in chicken.


Subject(s)
Chickens/physiology , Gene Expression , Inosine Monophosphate/metabolism , Meat/analysis , Muscle, Skeletal/physiology , Animal Feed/analysis , Animals , Chickens/genetics , Chickens/growth & development , Diet/veterinary , Dietary Supplements/analysis , Gene Expression Profiling/veterinary , Inosine Monophosphate/administration & dosage , Male , Pectoralis Muscles/physiology , Random Allocation
3.
Poult Sci ; 94(12): 2938-43, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26467009

ABSTRACT

The effects of maternal L-arginine supplementation on laying performance and the antioxidant capacity of broiler breeder hens, egg yolk, and their one-day-old offspring were investigated. In a 9 wk experiment, 210 60-week-old Arbor Acres healthy female broiler breeders were randomly divided into 5 treatments with 6 replicates of 7 females and fed a corn and soybean meal diet with 5 arginine levels (0.96%, 1.16%, 1.36%, 1.56%, and 1.76% digestible arginine). Laying performance and anti-oxidant capacity of broiler breeder hens, eggs, and offspring were evaluated. Digestible arginine level in the broiler breeder diet had a significant effect on the laying rate (linear and quadratic effect, P<0.0001). The highest laying rate was obtained when the diet with 1.36% digestible arginine was fed. There was a significant effect of digestible arginine level in the broiler breeder diet on the total antioxidant capacity (T-AOC) levels and methane dicarboxylic aldehyde (MDA) concentration in the broiler breeder serum, egg yolk and serum, and liver and breast of one-day-old offspring (linear and quadratic effect, P<0.05). The T-AOC level was highest and the MDA concentration lowest in all tissues when a diet with 1.36% digestible arginine was fed. No difference in glutathione peroxidase (GSH-PX) activity in the broiler breeder serum was observed. There were significant effects of digestible arginine level in the broiler breeder diet on the GSH-PX activity of the egg yolk (linear effect, P<0.01; quadratic effect, P<0.05) and serum, liver, and breast of one-day-old offspring (linear and quadratic effect, P≤0.01). The GSH-PX activity in all tissues measured in this experiment was highest when the dietary digestible arginine was 1.36%. These results indicate that the diet with 1.36% digestible arginine (1,972 mg/d) is optimal to satisfy the nutritional needs of a female broiler breeder during the late laying period.


Subject(s)
Antioxidants/metabolism , Arginine/pharmacology , Chickens/physiology , Egg Yolk/chemistry , Reproduction/drug effects , Animal Feed/analysis , Animal Nutritional Physiological Phenomena/drug effects , Animals , Diet/veterinary , Dietary Supplements/analysis , Egg Yolk/drug effects , Female , Random Allocation
SELECTION OF CITATIONS
SEARCH DETAIL