Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
Add more filters

Complementary Medicines
Publication year range
1.
Mol Med ; 30(1): 34, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448811

ABSTRACT

BACKGROUND: Imbalance in energy regulation is a major cause of insulin resistance and diabetes. Melanocortin-4 receptor (MC4R) signaling at specific sites in the central nervous system has synergistic but non-overlapping functions. However, the mechanism by which MC4R in the arcuate nucleus (ARC) region regulates energy balance and insulin resistance remains unclear. METHODS: The MC4Rflox/flox mice with proopiomelanocortin (POMC) -Cre mice were crossed to generate the POMC-MC4Rflox/+ mice. Then POMC-MC4Rflox/+ mice were further mated with MC4Rflox/flox mice to generate the POMC-MC4Rflox/flox mice in which MC4R is selectively deleted in POMC neurons. Bilateral injections of 200 nl of AAV-sh-Kir2.1 (AAV-sh-NC was used as control) were made into the ARC of the hypothalamus. Oxygen consumption, carbon dioxide production, respiratory exchange ratio and energy expenditure were measured by using the CLAMS; Total, visceral and subcutaneous fat was analyzed using micro-CT. Co-immunoprecipitation assays (Co-IP) were used to analyze the interaction between MC4R and Kir2.1 in GT1-7 cells. RESULTS: POMC neuron-specific ablation of MC4R in the ARC region promoted food intake, impaired energy expenditure, leading to increased weight gain and impaired systemic glucose homeostasis. Additionally, MC4R ablation reduced the activation of POMC neuron, and is not tissue-specific for peripheral regulation, suggesting the importance of its central regulation. Mechanistically, sequencing analysis and Co-IP assay demonstrated a direct interaction of MC4R with Kir2.1. Knockdown of Kir2.1 in POMC neuron-specific ablation of MC4R restored the effect of MC4R ablation on energy expenditure and systemic glucose homeostasis, indicating by reduced body weight and ameliorated insulin resistance. CONCLUSION: Hypothalamic POMC neuron-specific knockout of MC4R affects energy balance and insulin sensitivity by regulating Kir2.1. Kir2.1 represents a new target and pathway that could be targeted in obesity.


Subject(s)
Insulin Resistance , Animals , Mice , Glucose , Hypothalamus , Insulin Resistance/genetics , Neurons , Pro-Opiomelanocortin/genetics , Receptor, Melanocortin, Type 4/genetics
2.
J Ethnopharmacol ; 327: 117989, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38462026

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Massa Medicata Fermentata, a fermented Chinese medicine, is produced by the fermentation of six traditional Chinese medicines. Liu Shenqu (LSQ) and charred Liu Shenqu (CLSQ) have been used for strengthening the spleen and enhancing digestion for over a thousand years, and CLSQ is commonly used in clinical practice. However, it is unclear whether there is a difference in the spleen strengthening and digestion effects between LSQ and CLSQ, as well as their mechanisms of action. AIM OF STUDY: This study aims to compare the effects of LSQ and CLSQ on the digestive function of functional dyspepsia (FD) rats and reveal their mechanisms of action. MATERIALS AND METHODS: SPF grade SD rats were randomly divided into 6 groups: control group, model group, Liu Shenqu decoction low-dosage (LSQ LD) group, Liu Shenqu decoction high-dosage (LSQ HD) group, charred Liu Shenqu decoction low-dosage (CLSQ LD) group, and charred Liu Shenqu decoction high-dosage (CLSQ HD) group. Rats were injected intraperitoneally with reserpine to create an FD model and then treated by intragastric administration. During this period, record the weight and food intake of the animals. After 18 days of treatment, specimens of the gastric antrum, spleen, and duodenum of rats were taken for pathological staining and immunohistochemical detection of Ghrelin protein expression. Enzyme linked immunosorbent assay (ELISA) was used to determine the concentration of relevant gastrointestinal hormones in serum. The 16 S rDNA sequencing method was used to evaluate the effect of cecal contents on the structure of the gut microbiota in experimental rats. Plasma metabolomics analysis was performed using ultra high performance liquid chromatography coupled with quadrupole time of flight mass spectrometry (UPLC-QTOF-MS) to further reveal their mechanism of action. RESULTS: LSQ and CLSQ improved the pathological tissue histological structure of FD rats and increased the levels of MTL and GAS hormones in serum and the levels of ghrelin in the gastric antrum, spleen, and duodenum, while reducing VIP, CCK, and SP hormone levels. The above results showed that the therapeutic efficacy of CLSQ is better than that of LSQ. Futhermore, the mechanism of action of LSQ and CLSQ were revealed. The 16 S rDNA sequencing results showed that both LSQ and CLSQ can improve the composition and diversity of the gut microbiota. And metabolomic analysis demonstrated that 20 metabolites changed after LSQ treatment, and 16 metabolites underwent continuous changes after CLSQ treatment. Further analysis revealed that LSQ mainly intervened in the metabolic pathways of glycerol phospholipid metabolism and arginine and proline metabolism, but CLSQ mainly intervened in the metabolic pathways of ether lipid metabolism, sphingolipid metabolism, and glycerophospholipid metabolism. CONCLUSIONS: Both LSQ and CLSQ can improve functional dyspepsia in FD rats, but CLSQ has a stronger improvement effect on FD. Although their mechanisms of action are all related to regulating gastrointestinal hormone secretion, significantly improving intestinal microbiota disorders, and improving multiple metabolic pathways, but the specific gut microbiota and metabolic pathways they regulate are different.


Subject(s)
Drugs, Chinese Herbal , Dyspepsia , Microbiota , Rats , Animals , Ghrelin/therapeutic use , Dyspepsia/drug therapy , Rats, Sprague-Dawley , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Metabolomics/methods , DNA, Ribosomal
3.
Heliyon ; 10(5): e27019, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38495169

ABSTRACT

Objective: Genital herpes, primarily caused by HSV-2 infection, remains a widespread sexually transmitted ailment. Extracellular vesicles play a pivotal role in host-virus confrontation. Recent research underscores the influence of Chinese herbal prescriptions on extracellular vesicle production and composition. This study aims to probe the impact of JieZe-1 (JZ-1) on extracellular vesicle components, elucidating its mechanisms against HSV-2 infection via extracellular vesicles. Methods: The JZ-1's anti-HSV-2 effects were assessed using CCK-8 assay. Extracellular vesicles were precisely isolated utilizing ultracentrifugation and subsequently characterized through TEM, NTA, and Western Blot analyses. The anti-HSV-2 activity of extracellular vesicles was gauged using CCK-8, Western Blot, and immunofluorescence. Additionally, high-throughput sequencing was employed to detect miRNAs from extracellular vesicles, unraveling the potential antiviral mechanisms of JZ-1. Results: Antiviral efficacy of JZ-1 was shown in VK2/E6E7, HeLa, and Vero cells. The samples extracted from cell supernatant by ultracentrifugation were identified as extracellular vesicles. In VK2/E6E7 cells, extracellular vesicles from JZ-1 group enhanced cell survival rates and diminished the expression of intracellular viral protein gD, contrasting with the inert effect of control group vesicles. Extracellular vesicles from JZ-1 treated Vero cells demonstrated a weaker yet discernible anti-HSV-2 effect. Conversely, extracellular vesicles of HeLa cells exhibited no anti-HSV-2 effect from either group. High-throughput sequencing of VK2/E6E7 cell extracellular vesicles unveiled significant upregulation of miRNA-101, miRNA-29a, miRNA-29b, miRNA-29c, and miRNA-637 in JZ-1 group vesicles. KEGG pathway analysis suggested that these miRNAs may inhibit PI3K/AKT/mTOR signaling pathway and induce autophagy of host cells to protect against HSV-2. Western blot confirmed the induction of autophagy and inhibition of AKT/mTOR in VK2/E6E7 cells with JZ-1 group extracellular vesicles treatment. Conclusion: JZ-1 had an anti-HSV-2 efficacy. After JZ-1 stimulation, VK2/E6E7 cells secreted extracellular vesicles which protect host cells from HSV-2 infection. High-throughput sequencing showed that these extracellular vesicles contained a large number of miRNAs targeting PI3K/AKT/mTOR pathway. JZ-1 group extracellular vesicles could inhibit the activation of AKT/mTOR pathway and induce the host cells autophagy.

4.
Microb Cell Fact ; 22(1): 164, 2023 Aug 27.
Article in English | MEDLINE | ID: mdl-37635252

ABSTRACT

BACKGROUND: Recently, researchers have focused on the search for alternatives to conventional antibiotics. Antimicrobial peptides are small bioactive peptides that regulate immune activation and have antibacterial activity with a reduced risk of bacterial resistance. Porcine myeloid antibacterial peptide 37 (PMAP-37) is a small-molecule peptide with broad-spectrum antibacterial activity isolated from pig bone marrow, and PMAP-37(F34-R) is its analogue. In this study, PMAP-37(F34-R) was recombinantly expressed in Pichia pastoris, and the recombinant peptide was further investigated for its antibacterial properties, mechanism and preservative in plums. RESULTS: To obtain a Pichia pastoris strain expressing PMAP-37(F34-R), we constructed a plasmid expressing recombinant PMAP-37(F34-R) (pPICZα-PMAP-37(F34-R)-A) and introduced it into Pichia pastoris. Finally, we obtained a highly active recombinant peptide, PMAP-37(F34-R), which inhibited the activity of both Gram-positive and Gram-negative bacteria. The minimum inhibitory concentration is 0.12-0.24 µg/mL, and it can destroy the integrity of the cell membrane, leading to cell lysis. It has good stability and is not easily affected by the external environment. Hemolysis experiments showed that 0.06 µg/mL-0.36 µg/mL PMAP-37(F34-R) had lower hemolysis ability to mammalian cells, and the hemolysis rate was below 1.5%. Additionally, 0.36 µg/mL PMAP-37(F34-R) showed a good preservative effect in plums. The decay and weight loss rates of the treated samples were significantly lower than those of the control group, and the respiratory intensity of the fruit was delayed in the experimental group. CONCLUSIONS: In this study, we constructed a recombinant Pichia pastoris strain, which is a promising candidate for extending the shelf life of fruits and has potential applications in the development of new preservatives.


Subject(s)
Prunus domestica , Animals , Swine , Anti-Bacterial Agents/pharmacology , Hemolysis , Gram-Negative Bacteria , Gram-Positive Bacteria , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/pharmacology , Bacteria , Mammals
5.
J Integr Med ; 21(3): 277-288, 2023 05.
Article in English | MEDLINE | ID: mdl-36973158

ABSTRACT

OBJECTIVE: JieZe-1 (JZ-1), a Chinese herbal prescription, has an obvious effect on genital herpes, which is mainly caused by herpes simplex virus type 2 (HSV-2). Our study aimed to address whether HSV-2 induces pyroptosis of VK2/E6E7 cells and to investigate the anti-HSV-2 activity of JZ-1 and the effect of JZ-1 on caspase-1-dependent pyroptosis. METHODS: HSV-2-infected VK2/E6E7 cells and culture supernate were harvested at different time points after the infection. Cells were co-treated with HSV-2 and penciclovir (0.078125 mg/mL) or caspase-1 inhibitor VX-765 (24 h pretreatment with 100 µmol/L) or JZ-1 (0.078125-50 mg/mL). Cell counting kit-8 assay and viral load analysis were used to evaluate the antiviral activity of JZ-1. Inflammasome activation and pyroptosis of VK2/E6E7 cells were analyzed using microscopy, Hoechst 33342/propidium iodide staining, lactate dehydrogenase release assay, gene and protein expression, co-immunoprecipitation, immunofluorescence, and enzyme-linked immunosorbent assay. RESULTS: HSV-2 induced pyroptosis of VK2/E6E7 cells, with the most significant increase observed 24 h after the infection. JZ-1 effectively inhibited HSV-2 (the 50% inhibitory concentration = 1.709 mg/mL), with the 6.25 mg/mL dose showing the highest efficacy (95.76%). JZ-1 (6.25 mg/mL) suppressed pyroptosis of VK2/E6E7 cells. It downregulated the inflammasome activation and pyroptosis via inhibiting the expression of nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing protein 3 (P < 0.001) and interferon-γ-inducible protein 16 (P < 0.001), and their interactions with apoptosis-associated speck-like protein containing a caspase recruitment domain, and reducing cleaved caspase-1 p20 (P < 0.01), gasdermin D-N (P < 0.01), interleukin (IL)-1ß (P < 0.001), and IL-18 levels (P < 0.001). CONCLUSION: JZ-1 exerts an excellent anti-HSV-2 effect in VK2/E6E7 cells, and it inhibits caspase-1-dependent pyroptosis induced by HSV-2 infection. These data enrich our understanding of the pathologic basis of HSV-2 infection and provide experimental evidence for the anti-HSV-2 activity of JZ-1. Please cite this article as: Liu T, Shao QQ, Wang WJ, Liu TL, Jin XM, Xu LJ, Huang GY, Chen Z. The Chinese herbal prescription JieZe-1 inhibits caspase-1-dependent pyroptosis induced by herpes simplex virus-2 infection in vitro. J Integr Med. 2023; 21(3): 277-288.


Subject(s)
Drugs, Chinese Herbal , Herpes Simplex , Inflammasomes , Caspase 1/metabolism , Inflammasomes/metabolism , Inflammasomes/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis , Simplexvirus/drug effects , Simplexvirus/metabolism , Drugs, Chinese Herbal/pharmacology , Herpes Simplex/drug therapy , Humans
6.
J Ethnopharmacol ; 301: 115802, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36209953

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Thousands of years of clinical practice in the treatment of joint-related diseases support the efficacy and safety of Wutou decoction (WTD). Nevertheless, the lack of pharmacological evidence and unclear mechanisms make it difficult for WTD to become a recognized complementary therapy for the treatment of rheumatoid arthritis (RA). AIM OF THE STUDY: This study aimed to investigate the effect of WTD against synovial inflammation in RA and whether this effect depends on the regulation of macrophage polarization. MATERIALS AND METHODS: Sprague-Dawley rats were used to establish the collagen-induced arthritis (CIA) model. WTD with low and high doses was administered for 45 days. RAW264.7 cells were stimulated by lipopolysaccharide (LPS) or interleukin (IL)-4 to polarize M1 and M2 macrophages, which were pre-treated with WTD extract for 4 h. The anti-arthritic and anti-inflammatory effects of WTD were studied using arthritis score, histopathological staining, immunostaining, and enzyme-linked immunosorbent assay (ELISA). The polarization state of RAW264.7 cells and related pro/anti-inflammatory cytokines was detected by ELISA, reverse transcription quantitative polymerase chain reaction and western blotting. Western blotting and immunofluorescence were used to investigate the effect of WTD on nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and peroxisome proliferator-activated receptors γ (PPARγ) activation both in vivo and in vitro. RESULTS: WTD significantly reduced the arthritis score and the pathological damage of the knee joint and decreased the expression of tumor necrosis factor alpha (TNF-α), IL-6 in serum, TNF-α, IL-1ß, monocyte chemoattractant protein-1 (MCP-1), and matrix metalloproteinase-3 (MMP3) in the knee synovium. WTD inhibited M1 type polarization and promoted M2 type polarization, both in vitro and in vivo, and reduced the expression of pro-inflammatory cytokines while increasing the expression of anti-inflammatory cytokines. Experiments showed that WTD inhibited the phosphorylation of NF-κB and downstream p38 in the synovium of CIA rats and LPS-induced M1 type polarized RAW264.7 cells. In addition, PPARγ expression in the synovium of CIA rats was mainly located in the cytoplasm, and WTD treatment increased the nuclear translocation of PPARγ, which was further verified in RAW264.7 cells. CONCLUSIONS: NF-κB and PPARγ regulating M1 and M2 macrophage polarization and subsequent secretion of pro-inflammatory and anti-inflammatory cytokines are the underlying mechanisms of WTD that ameliorate RA synovial inflammation.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Animals , Rats , Anti-Inflammatory Agents , Arthritis, Experimental/chemically induced , Arthritis, Experimental/drug therapy , Arthritis, Experimental/metabolism , Arthritis, Rheumatoid/drug therapy , Cytokines/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Lipopolysaccharides/toxicity , Lipopolysaccharides/metabolism , Macrophages , NF-kappa B/metabolism , PPAR gamma/metabolism , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/metabolism
7.
Chem Biodivers ; 20(1): e202200822, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36527339

ABSTRACT

The traditional Chinese medicine of fermented medicine may be under the involvement of multiple strains and the interaction between these microorganisms. Liu Shenqu (Massa Medicata Fermentata, MMF) is one of the most widely used fermented medicines, whose potential processing mechanism is still unclear. In this work, UPLC/MS and GNPS methods were employed to rapidly predict chemical compositions in MMF. Moreover, the dynamic changes of strains, chemical compositions and anti-inflammatory activity of MMF during fermentation process were investigated, and subsequently strains-chemical compositions-efficacy interactions were revealed by Pearson correlation analysis and partial least squares regression (PLSR) analysis. As a result, 24 components were identified, and the potential strains including Bacillus, Burkholderia_Caballeronia_Paraburkholderia, Enterobacter, Aspergillus heterocaryoticus, Rhizopus arrhizus, Kazachstania bulderi, which related to the production of anti-inflammatory active ingredients were exposed. These results demonstrated chemical compositions-strains-efficacy interactions during fermentation of MMF, and provide reference for the exploration of the processing mechanism of MMF.


Subject(s)
Drugs, Chinese Herbal , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Medicine, Chinese Traditional/methods , Anti-Inflammatory Agents/pharmacology
8.
Phytomedicine ; 105: 154351, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35908522

ABSTRACT

BACKGROUND: Ban-xia-xie-xin-tang (BXXXT) has been applied in treating metabolic diseases, such as nonalcohol fatty liver disease, diabetes mellitus, and obesity. However, the underlying molecular mechanism of BXXXT in treating diabetes mellitus is unknown. PURPOSE: To clarify the underlying molecular mechanism of BXXXT in alleviating hepatic steatosis in high-fat diet (HFD)-fed mice. METHODS: After 12 weeks of HFD treatment, mice were administered BXXXT for 4 weeks. The main chemical components of BXXXT were identified by UPLC-TQ-MS/MS. Indicators associated with insulin resistance and lipid metabolism were detected. The effect of improving glucose and lipid metabolism between BXXXT and the different components was compared. Differentially expressed genes (DEGs) were identified by hepatic transcriptomics. Key DEGs and proteins were further detected by real-time quantitative polymerase chain reaction, western blotting, immunohistochemistry, and immunofluorescence staining. LDs and mitochondria were detected by transmission electron microscopy. RESULTS: First of all, our data demonstrated that the capacity to improve glucose and lipid metabolism for BXXXT was significantly superior to different components of BXXXT. BXXXT was found to improve HFD-induced insulin resistance. Moreover, BXXXT decreased weight, serum/hepatic triglycerides, total cholesterol, and FFAs to alleviate HFD-induced hepatic steatosis. According to the results of the hepatic transcription, Cidea and Cidec were identified as critical DEGs for promoting LD fusion and reducing FFAs ß-oxidation in mitochondria and peroxisome resulting in hepatic steatosis, which was reversed by BXXXT. CONCLUSION: BXXXT ameliorates HFD-induced hepatic steatosis and insulin resistance by increasing Cidea and Cidec-mediated mitochondrial and peroxisomal fatty acid oxidation, which may provide a potential strategy for therapy of NAFLD and T2DM.


Subject(s)
Insulin Resistance , Non-alcoholic Fatty Liver Disease , Pinellia , Animals , Apoptosis Regulatory Proteins , Diet, High-Fat , Fatty Acids, Nonesterified , Glucose , Liver , Mice , Mice, Inbred C57BL , Tandem Mass Spectrometry
9.
Article in English | MEDLINE | ID: mdl-35707467

ABSTRACT

Background: Diabetes mellitus-induced erectile dysfunction (DMED) is one of the most common complications of diabetes and is mainly attributed to oxidative stress. Hu-Lu-Ba-Wan (HLBW) is a classic Chinese formulation consisting of Trigonella foenum-graecum L. (TFG) and Psoralea corylifolia L. (PC). HLBW has been used not only for the treatment of diabetes but also for the treatment of erectile dysfunction in clinics. This study aimed to explore the efficacy and underlying mechanism of HLBW in ameliorating erectile function in streptozotocin-induced diabetic rats. Methods: The diabetic model was established by tail vein injection of streptozotocin (26 mg/kg), and then DMED rats screened by the apomorphine test were randomly divided into two groups: the model group and the HLBW group. The rats in the HLBW group were administered HLBW granules daily for 12 weeks. Fasting blood glucose and fasting insulin were tested by a commercial kit. Intracavernous pressure (ICP) and mean arterial pressure (MAP) were measured by cavernous nerve electrostimulation before the rats were killed. Erectile function was evaluated with ICP/MAP. The markers of oxidative stress in the corpus cavernosum (CC) were assayed by assay kits. Apoptosis in cavernosal tissue was detected by Western blotting (WB). The expression levels of vascular endothelial marker (vWF), α-smooth muscle actin (α-SMA), endothelial nitric oxide synthase (eNOS), and NADPH oxidase subunit P47phox were determined by WB and PCR. Furthermore, the structure of the CC was further confirmed by Masson's trichrome staining. Results: The results showed that HLBW significantly reduced blood glucose and increased insulin sensitivity. HLBW reduced oxidative stress and apoptosis. In addition, we observed that the expression levels of vWF, α-SMA, and eNOS as well as the ratio of smooth muscle to collagen increased in the HLBW group. Conclusions: Our results demonstrated that HLBW could reduce oxidative stress damage in CC to improve diabetes mellitus-induced erectile dysfunction in rats by inhibiting NADPH oxidase.

10.
J Biosci ; 472022.
Article in English | MEDLINE | ID: mdl-35092409

ABSTRACT

Depression is characterized by indifferent and slow thinking, leading to highly unfavorable social and economic burden. Hydroxysafflor yellow A (HSYA) is a traditional Chinese medicine and has many pharmacological properties, such as anti-oxidative and anti-inflammatory activities. However, the underlying mechanism unraveling the effect of HSYA on depression is still unclear. Here, depression animal model was established. It was demonstrated that HSYA improved depressive behavior in rat model of depression, which increased horizontal movement, vertical movement, sucrose percent index and decreased immobility of depressed rats. Moreover, HSYA inhibited the activation of HPA signaling, inflammation and oxidative stress in brain of depressed rats. HSYA played an opposite effect on production of chronic unpredicted mild stress (CUMS)-induced pro-inflammatory cytokines (TNF-α, IL-6 and IL-1ß). CUMS increased MDA expression but decreased SOD and GSH-Px expression, which were reversed by HSYA treatment. Furthermore, HSYA exerted a suppressive role in TLR4/NF-jB signaling pathway in brain of depressed rats. In conclusion, these findings indicted that HSYA can improve depressive behavior through inhibiting HPA signaling, repressing hippocampal inflammation and oxidative stress, which will provide a new therapeutic method for treating depression.


Subject(s)
Chalcone/analogs & derivatives , Depressive Disorder/drug therapy , Encephalitis/drug therapy , Hippocampus/drug effects , Hypothalamo-Hypophyseal System/drug effects , Quinones/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Chalcone/pharmacology , Cytokines/metabolism , Depressive Disorder/metabolism , Disease Models, Animal , Encephalitis/metabolism , Hippocampus/metabolism , Hippocampus/physiopathology , Male , NF-kappa B/metabolism , Oxidative Stress/drug effects , Oxidative Stress/physiology , Rats, Wistar , Toll-Like Receptor 4/metabolism
11.
Planta Med ; 88(1): 33-42, 2022 Jan.
Article in English | MEDLINE | ID: mdl-33682914

ABSTRACT

Berberine is an isoquinoline derivative alkaloid extracted from Chinese herbs. Recent studies have demonstrated the therapeutic effect of berberine on glucose metabolic disorders. However, its specific mechanism is still unclear. Our study aimed to research the glucose-lowering effect of berberine in diabetic rats and to reveal the possible role of the cholinergic anti-inflammatory pathway. Diabetic rats induced by administration of a high-calorie diet and streptozocin tail vein injection were assessed by the oral glucose tolerance test. Then, the diabetic rats were divided into two groups, those with or without the alpha7 nicotinic acetylcholine receptor gene downregulated, respectively, followed by treatment including berberine for 6 weeks. Results of this study show that the administration of berberine downregulated levels of fasting blood glucose and fasting insulin, and ameliorated insulin resistance in diabetic rats. Treatment with berberine inhibited acetylcholinesterase activity, and upregulated acetylcholine levels in the serum and alpha7 nicotinic acetylcholine receptor gene expression in the liver tissue. Meanwhile, berberine reversed elevated expression of cytokines interleukin-1ß and TNF-α in the serum and downregulated nuclear factor κB expression. However, berberine administration showed no glucose-lowering or anti-inflammatory effect in diabetic rats in which alpha7 nicotinic acetylcholine receptor gene expression was downregulated, and acetylcholinesterase activity was also significantly inhibited. In conclusion, berberine may ameliorate glucose metabolism by activating the alpha7 nicotinic acetylcholine receptor-mediated cholinergic anti-inflammatory pathway.


Subject(s)
Berberine , Diabetes Mellitus, Experimental , Acetylcholinesterase , Animals , Berberine/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Glucose , Neuroimmunomodulation , Rats , alpha7 Nicotinic Acetylcholine Receptor
12.
Vet Parasitol ; 300: 109614, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34837878

ABSTRACT

Chicken coccidiosis is a kind of parasitic protozoosis caused by Eimeria parasitizing in the chicken intestinal epithelial cells. Eimeria tenella is considered as a significantly virulent and harmful parasite. At present, drug resistance remains a major problem and a large number of drug residues have been found to be produced in the treatment of the disease. Hence, novel strategies are needed to avoid the harmful effects caused by the generation of various chemical drug residues to the human body and also reduce the economic loss caused by coccidiosis to the chicken industry. In this study, natural garlic essential oil was used to control Eimeria tenella infection. The anticoccidial index (ACI) was calculated according to the clinical symptoms, body weight gain, oocyst excretion and cecal lesions. The immune organ index and serum biochemical indexes were measured to verify the possible anticoccidial effects. The results showed that: compared with the infected group, continuous feeding of different doses of natural garlic essential oil could significantly reduce the clinical symptoms, cecal lesions, the number of oocysts, but increase the weight of sick chickens, and effectively improve the intestinal functions. Moreover, compared with diclazuril control group, 0.06 mL/L garlic essential oil exhibited similar anticoccidial index. The content of immune organ index, serum biochemical index IgM, IgG and IgA in 0.06 mL/L garlic essential oil group was the highest, which indicated that garlic essential oil had a significant tendency to improve the immune function of the chickens. This study also showed that the natural garlic essential oil exhibited the same beneficial effects as that of diclazuril on chicken coccidiosis, and the anti-coccidiosis index of 0.06 mL/L garlic essential oil was favorable. Thus based on the above evidences and its relatively low cost, garlic essential oil can be potentially be used as an efficient anti parasitic drug.


Subject(s)
Coccidiosis , Eimeria tenella , Garlic , Oils, Volatile , Poultry Diseases , Animals , Chickens , Coccidiosis/drug therapy , Coccidiosis/veterinary , Oils, Volatile/pharmacology , Oils, Volatile/therapeutic use , Poultry Diseases/drug therapy
13.
Chin Med ; 16(1): 78, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34399822

ABSTRACT

BACKGROUND: Accumulating evidence indicated that necroptosis plays an essential role in the pathogenesis of inflammatory bowel disease (IBD). The O-linked ß-N-acetylglucosaminylation (O-GlcNAcylation) of necroptotic signal molecule receptor-interacting serine-threonine kinase 3 (RIPK3) was reported to exert a protective effect in gut inflammation. Our recent study suggested traditional Chinese herbal formula Wu-Mei-Wan (WMW) as an effective prescription in mouse colitis. However, the potential mechanisms are not fully understood. Considering the crucial role of necroptosis in the pathogenesis of IBD, therefore, this study was designed to explain whether the anti-colitis effect of WMW is mediated by modulating necroptosis and its related mechanisms. METHODS: The protective effects of WMW on colitis have been determined by detecting colitis mice body weight, disease activity index (DAI), survival rate and colon length. Colonic inflammation was examined by inflammatory cells infiltration and local cytokines levels. After then, we measured the levels of necroptosis and O-GlcNAcylation. C O-immunoprecipitation experiments were used to address whether elevated O-GlcNAcylation can inhibit necroptotic signal transduction in the treatment of WMW. Finally, the key enzymes in O-GlcNAcylation: O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) were examined and molecular docking analysis was used to determine effective natural compounds in the regulation on OGT and OGA activities. RESULTS: Our results showed that WMW significantly improved mice body weight, survival rate and colon length, decreased DAI in TNBS-induced colitis. WMW obviously alleviated colonic inflammatory responses with reduced macrophages, neutrophils infiltration and local IL-1ß, IL-6, TNF-α and IFN-γ levels. It was found that WMW increased colonic O-GlcNAcylation level and inhibited the activation of RIPK1, RIPK3 and MLKL. Then, further experiments revealed that WMW enhanced OGT activity and suppressed OGA activity, thereby increasing RIPK3 O-GlcNAcylation and inhibiting the binding of RIPK3 and MLKL, which led to the inhibition of necroptosis. Additionally, docking analysis demonstrated that hesperidin, coptisine and ginsenoside Rb1 may exert a major role in the regulation on OGT and OGA activities by WMW. CONCLUSION: Our work demonstrated that WMW can alleviate TNBS-induced colitis in mice by inhibiting necroptosis through increasing RIPK3 O-GlcNAcylation.

14.
Phytomedicine ; 83: 153487, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33636476

ABSTRACT

BACKGROUND: Excessive hepatic glucose production (HGP) largely promotes the development of type 2 diabetes mellitus (T2DM), and the inhibition of HGP significantly ameliorates T2DM. Huanglian-Renshen-Decoction (HRD), a classic traditional Chinese herb medicine, is widely used for the treatment of diabetes in clinic for centuries and proved effective. However, the relevant mechanisms of HRD are not fully understood. PURPOSE: Based on that, this study was designed to identify the potential effects and underlying mechanisms of HRD on HGP by a comprehensive investigation that integrated in vivo functional experiments, network pharmacology, molecular docking, transcriptomics and molecular biology. METHODS: After confirming the therapeutic effects of HRD on T2DM mice, the inhibitory role of HRD on HGP was evaluated by pyruvate and glucagon tolerance tests, liver positron emission tomography (PET) imaging and the detection of gluconeogenic key enzymes. Then, network pharmacology and transcriptomics approaches were used to clarify the underlying mechanisms. Molecular biology, computational docking analysis and in vitro experiments were applied for final mechanism verification. RESULTS: Here, our results showed that HRD can decrease weight gain and blood glucose, increase fasting insulin, glucose clearance and insulin sensitivity in T2DM mice. Dysregulated lipid profile was also corrected by HRD administration. Pyruvate, glucagon tolerance tests and liver PET imaging all indicated that HRD inhibited the abnormal HGP of T2DM, and the expressions of phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6-phosphatase (G6Pase) were significantly suppressed by HRD as expected. Network pharmacology and transcriptomics approaches illustrated that PI3K/Akt/FoxO1 signaling pathway may be responsible for the inhibitory effect of HRD on HGP. Afterward, further western blot and immunoprecipitation found that HRD did activate PI3K/Akt/FoxO1 signaling pathway in T2DM mice, which confirmed previous results. Additionally, the conclusion was further supported by molecular docking and in vitro experiments, in which identified HRD compound, oxyberberine, was proven to exert an obvious effect on Akt. CONCLUSION: Our data demonstrated that HRD can treat T2DM by inhibiting hepatic glucose production, the underlying mechanisms were associated with the activation of PI3K/Akt/FoxO1 signaling pathway.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Drugs, Chinese Herbal/pharmacology , Glucose/metabolism , Animals , Blood Glucose/metabolism , Computational Biology , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Forkhead Box Protein O1/metabolism , Gene Expression Profiling , Gluconeogenesis/drug effects , Hep G2 Cells , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Insulin Resistance , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Obese , Panax/chemistry , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/chemistry , Proto-Oncogene Proteins c-akt/metabolism
15.
Medicine (Baltimore) ; 100(4): e23908, 2021 Jan 29.
Article in English | MEDLINE | ID: mdl-33530189

ABSTRACT

BACKGROUND: Poststroke depression (PSD) is a severe problem; it will significantly increase the mortality of patients after stroke, and affect the quality of life of patients after discharge. For stroke patients without noticeable adverse reactions, massage can effectively improve the patient's mood, thereby treating poststroke depression. But so far, there is still no systematic research to provide reliable evidence that massage can effectively treat poststroke depression. Therefore, the purpose of this study is to comprehensively summarize and evaluate the effectiveness and safety of massage therapy for poststroke depression. METHODS: We conduct a detailed search regardless of publication grade and language status. The search databases include the Web of Science, the Cochrane Library search, EMBASE, PubMed, CNKI, Chinese biomedical literature database, Chongqing VIP, and Wanfang. All randomized controlled trials and cohort studies on massage therapy for poststroke depression are published, as of November 15, 2020. The team consists of 2 experienced researchers who will select the retrieved documents and extract data. Later they used RevMan V.5.3 software for data analysis and data synthesis. RESULTS: The effectiveness and safety of massage therapy intended for poststroke depression will be subject to a systematic evaluation under this program. CONCLUSION: It will be substantiated in this review whether massage therapy is a reliable intervention for poststroke depression by examining the evidence collected. INPLASY REGISTRATION NUMBER: INPLASY2020110085.


Subject(s)
Clinical Protocols , Depression , Massage , Humans , Depression/therapy , Massage/adverse effects , Research Design , Stroke/psychology
16.
Chin J Integr Med ; 27(6): 432-439, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33459971

ABSTRACT

OBJECTIVE: To explore the protective effect and the underlying mechanism of Hu-Lu-Ba-Wan (, HLBW) on the testis of diabetic rats. METHODS: Twenty-four male Wistar rats (160-180 g) were randomly divided into 3 groups according to a random number table, including a control group (n=8), diabetic group (n=8), and HLBW group (n=8). Diabetic rat model was established by high-fat-diet administration and single intravenous injection of streptozotocin (26 mg/kg). Then HLBW granule was administrated for 12 weeks. Fasting blood glucose and insulin levels as well as serum total testosterone level and testicular testosterone content were examined. Oxidative stress markers in both serum and testis were tested. Meanwhile, testicular morphology was observed under hematoxylin and eosin (HE) and the ultrastructure of Leydig cell was observed by electron microscope. The superoxide anion level was detected by DHE, and TUNEL-positive cells of testis was evaluated by TUNEL assay. The gene and protein expression of protein kinase C (PKCα), phosphorylated PKCα (P-PKCα) and P47phox in testicular tissues were determined by quantitative RT-PCR analysis and Western bolt analysis. RESULTS: Compared with the diabetic group, HLBW treatment significantly reduced the fasting glucose levels and increased the levels of fasting insulin and testosterone in serum (P<0.01). HLBW administration also reduced the levels of reactive oxygen species (ROS) in plasma and alleviated the damage of oxidative stress in the testis of diabetic rats. Additionally, HLBW down-regulated the protein and mRNA levels of PKCα, P-PKCα and P47phox in testicular tissues. CONCLUSION: HLBW may attenuate the oxidative stress in the testis of diabetic rats via PKCα /NAPDH oxidase signaling pathway.


Subject(s)
Diabetes Mellitus, Experimental , Oxidative Stress , Testis , Animals , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Drugs, Chinese Herbal , Male , NADPH Oxidases , Oxidoreductases/metabolism , Protein Kinase C-alpha , Rats , Rats, Wistar , Signal Transduction , Testis/metabolism
17.
Phytother Res ; 35(1): 297-310, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32776627

ABSTRACT

Celastrol, a natural triterpene, has been shown to treat obesity and its related metabolic disorders. In this study, we first assessed the relationship between the antiobesity effects of celastrol and its antiinflammatory activities. Our results showed that celastrol can reduce weight gain, ameliorate glucose intolerance, insulin resistance, and dyslipidemia without affecting food intake in high-fat diet-induced obese mice. A CLAMS was used to clarify the improvement of metabolic profiles was attribute to increased adipose thermogenesis after celastrol treatment. Further studies found that celastrol decreased the infiltration of macrophage as well as its inflammatory products (IL-1ß, IL-18, MCP-1α, and TNF-α) in liver and adipose tissues, which also displayed an obvious inhibition of TLR3/NLRP3 inflammasome molecules. This study demonstrated that celastrol could be a potential drug for treating metabolic disorders, the underlying mechanism is related to ameliorating metabolic inflammation, thus increasing body energy expenditure.


Subject(s)
Anti-Obesity Agents/pharmacology , Energy Metabolism/drug effects , Inflammation/drug therapy , Triterpenes/pharmacology , Adipose Tissue/drug effects , Adipose Tissue/physiology , Animals , Anti-Inflammatory Agents/pharmacology , Cytokines/metabolism , Diet, High-Fat , Dyslipidemias/drug therapy , Glucose Intolerance/drug therapy , Inflammasomes/drug effects , Insulin Resistance , Liver/drug effects , Macrophages/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Obesity/drug therapy , Pentacyclic Triterpenes , Thermogenesis/drug effects , Weight Gain/drug effects
18.
Cell Rep ; 33(4): 108327, 2020 10 27.
Article in English | MEDLINE | ID: mdl-33113363

ABSTRACT

Abnormal activation of calcium channels has been shown to play crucial roles in tumor occurrence and development. However, the role of inhibitors targeting calcium channels in tumor progression and immune regulation remains unclear, and their clinical applications are still limited. We show that nifedipine (NIFE), a calcium channel blocker, inhibits calcium influx to impair nuclear factor of activated T cell 2 (NFAT2) dephosphorylation, activation, and nuclear translocation, thus preventing transcriptional activation of downstream signaling molecules to suppress colorectal cancer (CRC) proliferation and metastasis. In addition, NIFE decreases expression of programmed death-ligand 1 (PD-L1) on CRC cells and programmed death-1 (PD-1) on CD8+ T cells and reactivates tumor immune monitoring, which may stimulate or enhance PD-1-based antitumor immunotherapy. Our findings provide direct evidence that NIFE is a promising clinical therapy to treat patients with advanced CRC by affecting the tumor itself and tumor immunity. NIFE may be a promising therapeutic option to enhance effectiveness of immune checkpoint blockade therapy in CRC.


Subject(s)
Calcium Channel Blockers/therapeutic use , Colorectal Neoplasms/drug therapy , NFATC Transcription Factors/metabolism , Nifedipine/therapeutic use , Calcium Channel Blockers/pharmacology , Disease Progression , Humans , Nifedipine/pharmacology , Signal Transduction
19.
Phytomedicine ; 76: 153258, 2020 Jun 03.
Article in English | MEDLINE | ID: mdl-32563018

ABSTRACT

BACKGROUND: Wu-Mei-Wan, a classic traditional Chinese herb medicine, is one of the most important formulations to treat digestive diseases from ancient times to the present. Our previous study showed that WMW treatment can prevent T2DM in db/db mice, which motivating the application of WMW on metabolic disorders. PURPOSE: Obesity and its comorbid diseases have increased dramatically and are now a worldwide health problem. There is still a lack of satisfactory treatment strategies for obesity. This work was designed to assess the effect and related mechanism of WMW on high fat diet (HFD)-induced obese mice model. METHODS: Obese mice were induced by HFD. Thetherapeutic effect of WMW were analyzed by examining body and adipose tissue weight, metabolic profile and energy expenditure. Adipose tissue phenotype was determined by histological staining and the mitochondrial content was examined by transmission electron microscopy (TEM). Immunohistochemical and immunofluorescence staining, RT-qPCR and Western blot analysis were used to evaluate expression of key molecules in adipose tissue. RESULTS: WMW treatment significantly protects HFD-induced obesity. Here we showed that WMW limits weight gain, improves metabolic profile and increases energy expenditure. WMW inhibits the hypertrophy and hyperplasia of white adipocytes, the mechanism involving the inhibition of TLR3/IL-6/JAK1/STAT3 pathway. In brown adipose tissue (BAT), WMW promotes thermogenicprogramme without affecting cell proliferation. The activated BMP7/ Smad1/5/9 pathway is considered to be one of the explanations for the effect of WMW on BAT. CONCLUSION: Our results suggested that WMW can prevent obesity and its underlying mechanisms are associated with reducing white adipose tissue and enhancing brown adipose tissue function.

20.
Article in English | MEDLINE | ID: mdl-32328135

ABSTRACT

AIM: To further investigate the mechanism behind the antitumor properties of berberine regarding lipid metabolism. METHODS: Cell viability, proliferation, and apoptosis assays were performed to determine the antigrowth effects of berberine in vitro. Ectopic xenograft models in Balb/c nude mice were established to determine the antitumor effects of berberine in vivo. RESULTS: Berberine inhibited cell viability and proliferation of MGC803 human gastric cancer cell lines in a time- and dose-dependent manner. Berberine induced apoptosis of MGC803 and increased the apoptotic rate with higher doses. Berberine induced the accumulation of fatty acid of MGC803 and suppressed the protein expression of FABPs and PPARα. The FABP inhibitor BMS309403 recapitulated the effects of berberine on MGC803 cells. In the xenograft model, berberine significantly decreased the tumor volume and tumor weight and induced apoptosis in tumor tissues. Berberine significantly elevated the fatty acid content and inhibited the expression of FABPs and PPARα in the MGC803 xenograft models. CONCLUSION: Berberine exerted anticancer effects on human gastric cancer both in vitro and in vivo by inducing apoptosis, which was due to the reduced protein expression of FABPs and the accumulation of fatty acid.

SELECTION OF CITATIONS
SEARCH DETAIL