Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Fish Shellfish Immunol ; 135: 108653, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36868540

ABSTRACT

Echinacea purpurea (Linn.) Moench (EP) is a globally popular herbal medicine, which showed effects on growth promotion, antioxidant and immunomodulatory activities in fish culture world widely. However, there are few studies about the effects on miRNAs by EP in fish. The hybrid snakehead fish (Channa maculate♀ × Channa argus ♂) was new important economic specie of freshwater aquaculture in China with high market value and demand while there were only a few reports about its miRNAs. To overview immune-related miRNAs of the hybrid snakehead fish and to further understand the immune regulating mechanism of EP, we herein constructed and analyzed three small RNA libraries of immune tissues including liver, spleen and head kidney of the fish with or without EP treatment via Illumina high-throughput sequencing technology. Results showed that EP can affect the immune activities of fish by the miRNA-regulated ways. Totally, 67 (47 up and 20 down) miRNAs in liver, 138 (55 up and 83 down) miRNAs in spleen, and 251 (15 up and 236 down) miRNAs in spleen were detected, as well as 30, 60, 139 kinds of immune-related miRNAs belonging to 22, 35 and 66 families of the three tissues respectively. The expressions of 8 immune-related miRNA family members were found in all the three tissues, including miR-10, miR-133, miR-22 and etc. Some miRNAs have been identified involved in the innate and adaptive immune responses, such as the miR-125, miR-138, and miR-181 family. Ten miRNA families with antioxidant target genes were also discovered, including miR-125, miR-1306, and miR-138, etc. Results from Gene Ontology (GO) and KEGG pathway analysis further confirmed there are a majority immune response targets of the miRNAs involved in the EP treatment process. Our study deepened understanding roles of miRNAs in fish immune system and provides new ideas for the study of immune mechanism of EP.


Subject(s)
Echinacea , MicroRNAs , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Antioxidants , Fishes
2.
Fish Shellfish Immunol ; 127: 918-924, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35863536

ABSTRACT

PAP (3'-phosphoadenosine 5'-phosphate) is a ubiquitous phosphoric acid and a natural inhibitor of the XRN (5'-3'exoribonuclease) family. It was proved to enter the nucleus through the retrograde signaling pathway and inhibit XRN2 to prevent the degradation of miRNA precursors, thus promoting the anti-oxidation miRNA level in Arabidopsis thaliana. Vitamin E (tocopherol) was proved to promote the accumulation of PAP in the plant, which facilitates PAP into the nucleus to accomplish its antioxidant function. However, the relationship between VE and PAP in animals is unclear. To identify the relationship between VE and PAP and to uncover the function of PAP in fish, we investigated the performance of VE and PAP in Nile tilapia by comparing the antioxidant indicators (SOD, GSH-Px, and CAT), the Keap1-Nrf2 signaling pathway, and the miRNA expression profiles. Results showed that the antioxidant effect of VE and PAP showed similar character either in tilapia liver or in serum: the activities of GSH-Px and CAT of both groups were significantly increased (P < 0.05); the SOD activity of the VE group was significantly increased (P < 0.05), and although the result of the PAP group was not so significant (P > 0.05), PAP improved the SOD level, too. The two groups also showed similar character in the tilapia liver; both did not significantly increase the liver δ-VE content (P > 0.05). However, VE significantly increased the content of α-VE and γ-VE (P < 0.05), while the PAP group was insignificant (P > 0.05). Feed with VE and intraperitoneal injection of PAPs reagent both increased the PAP content in the liver of tilapia, and the effect of the VE group was more significant (P < 0.05) than that of the PAP group (P > 0.05). Both groups reduced the expression of Keap1 and Cullin3 genes and improved the level of HO-1 gene expression, with the improved miRNA level of Nrf2. As a logical result, they decreased the expression of XRN1 and XRN2. By profile sequencing, we further identified some antioxidant closely related miRNAs shared in the VE and PAP groups, including miR-30, miR-24, miR-19b, and miR-100. By comparing the regulating mechanism of VE and PAP of feed supply and intraperitoneal injection, we proved that VE and PAP were closely related in fish; VE promoted the gathering of PAP. The latter retrograded into the nucleus of the fish liver to inhibit the expression of XRN genes and to up-regulate antioxidant miRNA levels as it does in plants. Only the PAP can accomplish the antioxidant activities, while VE promotes the process. Our study laid the foundation for the application of PAP as a new antioxidant agent in fish farming and benefit a further understanding of the VE antioxidant function in fish.


Subject(s)
Cichlids , MicroRNAs , Animal Feed/analysis , Animals , Antioxidants/metabolism , Cichlids/genetics , Cichlids/metabolism , Diet , Dietary Supplements , Kelch-Like ECH-Associated Protein 1/metabolism , MicroRNAs/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Signal Transduction , Superoxide Dismutase/metabolism , Vitamin E/metabolism
3.
Biomaterials ; 241: 119907, 2020 05.
Article in English | MEDLINE | ID: mdl-32120315

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease exhibiting the poorest prognosis among solid tumors. The efficacy of conventional therapies has been hindered largely due to the insufficient chemotherapeutic delivery to the dense desmoplastic tumor stroma, and the extremely high or toxic dose needed for chemotherapy. Traditional Chinese Medicine (TCM) contains effective components that can effectively regulate tumor microenvironment and kill tumor cells, providing promising alternatives to PDAC chemotherapy. In this study, two active drug monomers of TCM were screened out and a sequentially targeting delivery regimen was developed to realize the optimized combinational therapy. Transforming growth factor-ß (TGF-ß) plays an indispensable role in promoting cancer-associated fibroblasts (CAFs) activation and proliferation, and CAFs have caused major physical barriers for chemotherapeutic drug delivery. Herein, CAFs-targeting biodegradable polymer nanoparticle (CRE-NP(α-M)) coated with CREKA peptide and loaded with TCM α-mangostin (α-M) was developed to modulate tumor microenvironment by interfering of TGF-ß/Smad signaling pathway. Low pH-triggered micelle modified with CRPPR peptide and loaded with another TCM triptolide was constructed to increase the therapeutic effect of triptolide at the tumor sites and reduced its damage to main organs. As expected, CRE-NP(α-M) effectively inactived CAFs, reduced extracellular matrix production, promoted tumor vascular normalization and enhanced blood perfusion at the tumor site. The sequentially targeting drug delivery regimen, CRP-MC(Trip) following CRE-NP(α-M) pretreatment, exhibited strong tumor growth inhibition effect in the orthotopic tumor model. Hence, sequentially targeting delivery of nanoformulated TCM offers an efficient approach to overcome the permeation obstacles and improve the effect of chemotherapy on PDAC, and provides a novel option to treat desmoplastic tumors.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Phenanthrenes , Diterpenes , Epoxy Compounds , Humans , Pancreatic Neoplasms/drug therapy , Tumor Microenvironment , Xanthones
4.
Biomaterials ; 164: 80-97, 2018 05.
Article in English | MEDLINE | ID: mdl-29499438

ABSTRACT

Recent breakthroughs in cancer immunotherapy offer new paradigm-shifting therapeutic options for combating cancer. Personalized therapeutic anti-cancer vaccines training T cells to directly fight against tumor cells endogenously offer tremendous benefits in working synergistically with immune checkpoint inhibitors. Biomimetic nanotechnology offers a versatile platform to boost anticancer immunity by efficiently co-delivering optimized immunogenic antigen materials and adjuvants to antigen presenting cells (APC). Necroptotic tumor cells can release danger associated molecule patterns (DAMPs) like heat shock proteins, being more immunogenic than naïve tumor cells. Here, nano-size "artificial necroptotic cancer cell" (αHSP70p-CM-CaP) composing of phospholipid bilayer and a phosphate calcium core was designed as a flexible vaccine platform for co-delivering cancer membrane proteins (CM), DAMPs signal-augmenting element α-helix HSP70 functional peptide (αHSP70p) and CpG to both natural killer (NK) cells and APC. Mechanically, immunogenic B16OVA tumor cells membrane-associated antigens and αHSP70p were reconstituted in artificial outer phospholipid bilayer membrane via one-step hydration and CpG encapsulated in the phosphate calcium core. The resulted αHSP70p-CM-CaP exhibited 30 nm in diameter with the immunogenic membrane proteins reserved in the particles to produce synergistic effect on bone marrow derived dendritic cells maturation and antigen-presentation. Following αHSP70p-CM-CaP vaccination, efficient lymph node trafficking and multi-epitope-T cells response was observed in mice. Vitally, αHSP70p-CM-CaP was also able to induce expansion of IFN-γ-expressing CD8+ T cells and NKG2D+ NK cells subsets. Most promisingly, αHSP70p-CM-CaP vaccination led to the killing of target cells and tumor regression in vivo when combined with anti-PD-1 antibody treatment on mice B16OVA melanoma models. Altogether, we demonstrated proof-of-concept evidence for the feasibility, capability and safety of a nanovaccine platform towards efficient personalized anticancer application.


Subject(s)
Cancer Vaccines , Immunotherapy , Adjuvants, Immunologic/pharmacology , Animals , Antigens, Neoplasm/immunology , Biomimetic Materials , Cancer Vaccines/immunology , Cancer Vaccines/pharmacology , Humans , Immunotherapy/methods , Mice , Mice, Inbred C57BL , Nanoparticles , Theranostic Nanomedicine/methods
5.
Sci Rep ; 7: 39825, 2017 01 04.
Article in English | MEDLINE | ID: mdl-28051178

ABSTRACT

Branched-chain amino acids (BCAAs) are essential amino acids for mammals and play key roles in the regulation of protein metabolism. However, the effect of BCAA deficiency on protein metabolism in skeletal muscle in vivo remains unclear. Here we generated mice with lower BCAA concentrations by specifically accelerating BCAA catabolism in skeletal muscle and heart (BDK-mKO mice). The mice appeared to be healthy without any obvious defects when fed a protein-rich diet; however, bolus ingestion of BCAAs showed that mTORC1 sensitivity in skeletal muscle was enhanced in BDK-mKO mice compared to the corresponding control mice. When these mice were fed a low protein diet, the concentration of myofibrillar protein was significantly decreased (but not soluble protein) and mTORC1 activity was reduced without significant change in autophagy. BCAA supplementation in drinking water attenuated the decreases in myofibrillar protein levels and mTORC1 activity. These results suggest that BCAAs are essential for maintaining myofibrillar proteins during protein undernutrition by keeping mTORC1 activity rather than by inhibiting autophagy and translation. This is the first report to reveal the importance of BCAAs for protein metabolism of skeletal muscle in vivo.


Subject(s)
Amino Acids, Branched-Chain/metabolism , Diet, Protein-Restricted , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Protein Kinases/genetics , Adaptor Proteins, Signal Transducing , Animals , Carrier Proteins/metabolism , Cell Cycle Proteins , Dietary Supplements , Eukaryotic Initiation Factors , Kidney/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Mice, Knockout , Myocardium/metabolism , Phosphoproteins/metabolism , Phosphorylation , Protein Kinases/deficiency , Ribosomal Protein S6 Kinases, 90-kDa/metabolism
6.
Fish Shellfish Immunol ; 34(6): 1470-5, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23542605

ABSTRACT

Currently, microRNAs (miRNAs) are known to regulate cellular processes such as apoptosis, differentiation, cell cycle, and immune functions, and their expression can be altered by distinct stress conditions, such as oxidative stress. In immune systems of fish, vitamin E (VE) has a defined role as an antioxidant. In order to understand the molecular mechanism of vitamin E defending from oxidative stress, three groups of juvenile Nile tilapia (Oreochromis niloticus) (initial weight 3.25 ± 0.02 g) were fed to satiation with 3 semi-purified diets containing VE (DL-α-tocopherol acetate) of 0, 50, and 2500 mg/kg supplementation, respectively, with the expressions of eight miRNAs (miR-21, miR-223, miR-146a, miR-125b, miR-181a, miR-16, miR-155 and miR-122) in the liver of tilapia subsequently detected after 8-week growth experiment. Results showed that VE-deficient (0 mg/kg supplementation) decreased the activity of superoxide dismutase (SOD), and decreased the expressions of miR-223, miR-146a, miR-16 and miR-122, while excessive supplementation of VE (2500 mg/kg) decreased SOD activity and increased the expressions of all the eight miRNAs. The targets of the eight miRNAs were further predicated with bioinformatic approach and the possible regulating mechanisms of VE via miRNAs were analyzed. The present study confirmed that the differences in dietary VE affected expression of hepatic miRNAs which may partly demonstrate the molecular mechanism of VE, and the new idea of introducing miRNAs into research will provide the basic data for researches of molecular nutrition.


Subject(s)
Antioxidants/administration & dosage , Cichlids/genetics , Gene Expression Regulation , MicroRNAs/genetics , Oxidative Stress/drug effects , Vitamin E/administration & dosage , Animal Feed/analysis , Animals , Cichlids/metabolism , Dietary Supplements/analysis , Dose-Response Relationship, Drug , Fish Proteins/genetics , Fish Proteins/metabolism , Liver/enzymology , Liver/metabolism , MicroRNAs/metabolism , Real-Time Polymerase Chain Reaction/veterinary , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL