Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Int J Biol Macromol ; 263(Pt 1): 130153, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38367778

ABSTRACT

Vegetable oils-based pressure sensitive adhesives (PSAs) are green and sustainable but face unsatisfactory adhesion strengths and are prone to aging during storage and application due to the existence of residual double bonds and massive ester bonds. Nine common antioxidants (tea polyphenol palmitate (TPP), caffeic acid, ferulic acid, gallic acid, butylated hydroxytoluene, tertiary butylhydroquinone, butylated hydroxyanisole, propyl gallate, and tea polyphenols) were grafted into epoxidized soybean oils-PSA (ESO-PSA) system to enhance antiaging properties and adhesion strengths. Results showed ESO-PSAs grafted with caffeic acid, tertiary butylhydroquinone, butylated hydroxyanisole, propyl gallate, tea polyphenols, or TPP didn't occur failure with TPP having best performance. The optimal conditions were ESO reacted with 0.9 % TPP, 70 % rosin ester, and 7.0 % phosphoric acid at 50 °C for 5 min, under which peel strength and loop tack increased to 2.460 N/cm and 1.66 N, respectively, but peel strength residue reduced to 138.09 %, compared with control (0.407 N/cm, 0.43 N, and 1669.99 %). Differential scanning calorimetry and thermogravimetric results showed TPP grafting increased the glass transition temperature of ESO-PSA slightly but improved its thermal stability significantly. Fourier transform infrared spectroscopy and 1H nuclear magnetic resonance results showed TPP, phosphoric acid, and rosin ester all partially participated in the covalently crosslinking polymerization of ESO-PSAs and the rest existed in the network structures in the free form.


Subject(s)
Butylated Hydroxyanisole , Caffeic Acids , Phosphoric Acids , Soybean Oil , Humans , Male , Soybean Oil/chemistry , Butylated Hydroxyanisole/analysis , Propyl Gallate , Polyphenols , Adhesives/chemistry , Prostate-Specific Antigen , Esters , Tea
2.
Plant Dis ; 106(9): 2470-2479, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35286131

ABSTRACT

Bacterial infections are the cause of rhizome rot in ginger (Zingiber officinale). Key members of the endophytic microbial community in ginger rhizomes have not been identified, and their impact on the decay of rhizomes during the activation of adventitious bud development has not been investigated. High-throughput, 16S rRNA amplicon sequencing and inoculation experiments were used to analyze the microbial diversity, community structure and composition, and pathogenicity of isolated bacteria. Our results indicated that the composition of the endophytic microbiota underwent a shift during the progression of rhizome rot disease. Enterobacteriaceae, Lachnospiraceae, and the bacterial genera Clostridium, Bacteroides, Acrobacter, Dysgonomonas, Anaerosinus, Pectobacterium, and Lactococcus were relatively abundant in the bacterial community of rhizomes exhibiting bacterial decay symptoms but were also present in asymptomatic rhizomes. The presence of Enterobacteriaceae and Pseudomonadaceae were positively correlated (ρ = 0.83) at the beginning of the sampling period in the symptomatic group, while a positive correlation (ρ = 0.89) was only observed after 20 days in the asymptomatic group. These data indicate that the co-occurrence of Enterobacteriaceae and Pseudomonadaceae may be associated with the development of ginger rot. Bacterial taxa isolated from ginger rhizomes, such as Enterobacter cloacae, E. hormaechei, and Pseudomonas putida, induced obvious rot symptoms when they were inoculated on ginger rhizomes. Notably, antibiotic-producing bacterial taxa in the Streptococcaceae and Flavobacteriaceae were also relatively abundant in rhizomes with rot and appeared to be linked to the onset of rhizome rot disease. Our results provide important information on the establishment and management of disease in ginger rhizomes.


Subject(s)
Microbiota , Zingiber officinale , Bacteria/genetics , Zingiber officinale/chemistry , Zingiber officinale/genetics , Zingiber officinale/microbiology , Plant Extracts , RNA, Ribosomal, 16S/genetics
3.
J Integr Med ; 19(2): 135-143, 2021 03.
Article in English | MEDLINE | ID: mdl-33334712

ABSTRACT

OBJECTIVE: Bushen Tiansui formula (BSTSF), a traditional Chinese medicine prescription, has been widely used to treat Alzheimer's disease (AD). However, the mechanisms underlying its effects remain largely unknown. In this study, a rat AD model was used to study the effects of BSTSF on cognitive performance and expression of transfer RNA-derived small RNAs (tsRNAs) in the hippocampus, to determine whether treatment of AD with BSTSF could regulate the expression of tsRNAs, a novel small non-coding RNA. METHODS: To generate a validated AD model, oligomeric amyloid-ß1-42 (Aß1-42) was injected intracerebroventricularly into rats. The Morris water maze (MWM) test was used to evaluate rat cognitive performance, and tsRNA-sequencing was conducted to examine tsRNA expression in the rat hippocampus. Potential targets were validated by quantitative real-time polymerase chain reaction (qRT-PCR). Bioinformatic analyses were conducted to investigate the biological function of candidate tsRNAs. RESULTS: The learning and memory deficits of Aß1-42-induced AD rats, assessed by MWM tests, were clearly ameliorated by BSTSF treatment. A total of 387 tsRNAs were detected in the rat hippocampus. Among them, 13 were significantly dysregulated in AD rats compared with sham control rats, while 57 were markedly altered by BSTSF treatment, relative to untreated AD rats (fold change ≥ 2 and P < 0.05). Moreover, six BSTSF treatment-related tsRNAs were identified and validated by qRT-PCR. Bioinformatic analyses indicated that the six treatment-related tsRNAs had potential therapeutic roles, via multiple signaling pathways and Gene Ontology biological functions, including cyclic adenosine monophosphate and retrograde endocannabinoid signaling. CONCLUSION: This study identified a previously uncharacterized mechanism underlying the effects of BSTSF in alleviating the learning and memory deficits in Aß1-42-induced AD rats, demonstrating that tsRNAs are potential therapeutic targets of BSTSF in the treatment of AD.


Subject(s)
Alzheimer Disease , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Animals , Disease Models, Animal , Hippocampus , Medicine, Chinese Traditional , RNA, Transfer , Rats
4.
Neural Plast ; 2020: 8874885, 2020.
Article in English | MEDLINE | ID: mdl-33029123

ABSTRACT

Bushen-Tiansui Formula (BTF) was empirically updated from a classical prescription named Kong-Sheng-Zhen-Zhong pill. It is based on the traditional Chinese medicine theory of the mutual relationship between the brain and the kidney and is intended to treat neurodegenerative diseases. This formulation has been used for several years to treat patients with Alzheimer's disease- (AD-) like symptoms in our clinical department. However, the medicinal ingredients and the mechanisms by which BTF improves cognition and memory functions have not been characterized. In this study, we used UPLC-MS to generate a chromatographic fingerprinting of BTF and identified five possible active ingredients, including stilbene glycoside; epimedin A1, B, and C; and icariin. We also showed that oral administration of BTF reversed the cognitive defects in an Aß 1-42 fibril-infused rat model of AD, protected synaptic ultrastructure in the CA1 region, and restored the expression of BDNF, synaptotagmin (Syt), and PSD95. These effects likely occurred through the BDNF-activated receptor tyrosine kinase B (TrkB)/Akt/CREB signaling pathway. Furthermore, BTF exhibited no short-term or chronic toxicity in rats. Together, these results provided a scientific support for the clinical use of BTF to improve learning and memory in patients with AD.


Subject(s)
Alzheimer Disease/psychology , Amyloid beta-Peptides/administration & dosage , Brain/drug effects , Cognition/drug effects , Drugs, Chinese Herbal/administration & dosage , Peptide Fragments/administration & dosage , Alzheimer Disease/chemically induced , Animals , Brain/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Disease Models, Animal , Male , Rats, Sprague-Dawley , Signal Transduction/drug effects
5.
Oxid Med Cell Longev ; 2020: 5243453, 2020.
Article in English | MEDLINE | ID: mdl-32655770

ABSTRACT

Bushen Tiansui Formula (BSTSF) is a traditional Chinese medicine prescription. It has been widely applied to treat Alzheimer's disease (AD) in the clinic; however, the mechanisms underlying its effects remain largely unknown. In this study, we used a rat AD model to study the effects of BSTSF on cognitive performance, and UPLC-MS/MS-based metabolomic and lipidomic analysis was further performed to identify significantly altered metabolites in the cerebral cortices of AD rats and determine the effects of BSTSF on the metabolomic and lipidomic profiles in the cerebral cortices of these animals. The results revealed that the levels of 47 metabolites and 30 lipids primarily associated with sphingolipid metabolism, glycerophospholipid metabolism, and linoleic acid metabolism were significantly changed in the cerebral cortices of AD rats. Among the altered lipids, ceramides, phosphatidylethanolamines, lysophosphatidylethanolamines, phosphatidylcholines, lysophosphatidylcholines, phosphatidylserines, sphingomyelins, and phosphatidylglycerols showed robust changes. Moreover, 34 differential endogenous metabolites and 21 lipids, of which the levels were mostly improved in the BSTSF treatment group, were identified as potential therapeutic targets of BSTSF against AD. Our results suggest that lipid metabolism is highly dysregulated in the cerebral cortices of AD rats, and BSTSF may exert its neuroprotective mechanisms by restoring metabolic balance, including that of sphingolipid metabolism, glycerophospholipid metabolism, alanine, aspartate, and glutamate metabolism, and D-glutamine and D-glutamate metabolism. Our data may lead to a deeper understanding of the AD-associated metabolic profile and shed new light on the mechanism underlying the therapeutic effects of BSTSF.


Subject(s)
Alzheimer Disease/drug therapy , Disease Models, Animal , Drugs, Chinese Herbal/therapeutic use , Neuroprotection/drug effects , Alzheimer Disease/chemically induced , Alzheimer Disease/metabolism , Alzheimer Disease/psychology , Amyloid beta-Peptides/toxicity , Animals , Biomarkers/metabolism , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Lipid Metabolism/drug effects , Male , Metabolic Networks and Pathways/drug effects , Metabolome/drug effects , Morris Water Maze Test/drug effects , Peptide Fragments/toxicity , Rats , Rats, Sprague-Dawley
6.
J Ethnopharmacol ; 249: 112371, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31683034

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Bushen Tiansui Formula (BSTSF) is a traditional Chinese medicine formula used clinically to treat Alzheimer's disease (AD) for many years. Previously, we have partially elucidated the mechanisms involved in the therapeutic effects of BSTSF on AD. However, the underlying mechanisms remain largely unclear. AIM OF THE STUDY: The aim of this study was to further investigate the therapeutic effects of BSTSF on AD using an integrated strategy of network pharmacology and serum metabolomics. MATERIALS AND METHODS: The rat models of AD were established using Aß 1-42 injection, and morris water maze test was used to evaluate the efficacy of BSTSF on AD. Next, network pharmacology analysis was applied to identify the active compounds and target genes, which might be responsible for the effect of BSTSF. Then, a metabolomics strategy has been developed to find the possible significant serum metabolites and metabolic pathway induced by BSTSF. Additionally, two parts of the results were integrated to confirm each other. RESULTS: The results of the network pharmacology analysis showed 37 compounds and 64 potential target genes related to the treatment of AD with BSTSF. The functional enrichment analysis indicated that the potential mechanism was mainly associated with the tumor necrosis factor signaling pathway and phosphatidylinositol 3 kinase/protein kinase B signaling pathway. Based on metabolomics, 78 differential endogenous metabolites were identified as potential biomarkers related to the BSTSF for treating AD. These metabolites were mainly involved in the relevant pathways of linoleic acid metabolism, α-linolenic acid metabolism, glycerophospholipid metabolism, tryptophan metabolism, and arginine and proline metabolism. These findings were partly consistent with the findings of the network pharmacology analysis. CONCLUSIONS: In conclusion, our results solidly supported and enhanced out current understanding of the therapeutic effects of BSTSF on AD. Meanwhile, our work revealed that the proposed network pharmacology-integrated metabolomics strategy was a powerful means for identifying active components and mechanisms contributing to the pharmacological effects of traditional Chinese medicine.


Subject(s)
Alzheimer Disease/blood , Alzheimer Disease/drug therapy , Cognition/drug effects , Drugs, Chinese Herbal/pharmacology , Metabolome/drug effects , Serum/metabolism , Animals , Biomarkers/blood , Male , Maze Learning/drug effects , Medicine, Chinese Traditional/methods , Metabolic Networks and Pathways/drug effects , Metabolomics/methods , Rats , Rats, Sprague-Dawley
7.
Article in English | MEDLINE | ID: mdl-31379968

ABSTRACT

OBJECTIVE: To systematically review whether the Kangai injection (KAI), which is commonly used traditional Chinese medicine, can improve the clinical efficacy of chemotherapy and relieve adverse reactions of chemotherapy in advanced colorectal cancer (CRC) patients. METHODS: A comprehensive literature search was performed in three English and three Chinese electronic databases until March 2019. The literature was screened by EndNote X8 and data were analysed by RevMan5 and Stata12.0. RESULTS: This meta-analysis consisted of twenty-eight studies, of which 2310 cases were reported. Among the 2310 cases, 1207 cases were treated with KAI combined with chemotherapy and 1103 cases were treated with chemotherapy alone. The results showed that KAI combined with chemotherapy significantly improved tumor response (Risk Ratio (RR) =1.32; 95% confidence interval (CI): 1.22-1.43; p<0.00001); Karnofsky performance status (KPS score) (Risk Ratio (RR) =1.48; 95% CI: 1.36-1.60; p<0.00001); reduced adverse drug reactions (ADRs) such as nausea and vomiting (OR =0.31; 95% CI: 0.24-0.41; p <0.00001), diarrhea (OR =0.36; 95% CI: 0.25-0.52; p<0.00001), leukopenia (OR =2.97; 95% CI:2.27-3.88; p<0.00001), thrombocytopenia (OR =0.53; 95% CI: 0.38-0.74; p<0.0002), liver dysfunction (OR =0.29; 95% CI: 0.20-0.44; p<0.00001), neurotoxicity (OR =0.51; 95% CI: 0.36-0.71; p = 0.0004); increased immune function (CD3+: MD=6.34; 95% CI: 5.52-7.16; p < 0.00001, CD4+: MD=-5.99; 95% CI: 5.20-6.78; p < 0.00001; and CD4+/CD8+: MD=0.34; 95% CI: 0.14-0.54; p < 0.0009), and prolonged survival time (OR =1.77; 95% CI: 1.25-2.50; p = 0.001). Renal dysfunction caused by chemotherapy was not affected by KAI treatment (Odds Ratio (OR) =0.53; 95%IC: 0.25-1.12; p = 0.10). CONCLUSION: KAI can increase clinical effectiveness, improve quality of life, alleviate ADRs, and prolong survival time in advanced colorectal (CRC) patients receiving chemotherapy.

8.
Zhongguo Zhong Yao Za Zhi ; 44(11): 2359-2366, 2019 Jun.
Article in Chinese | MEDLINE | ID: mdl-31359664

ABSTRACT

In this study, gas chromatography coupled with mass spectrometry(GC-MS) was used to analyze the changes of 12 kinds of cancer cells treated by curcumin. The related differential metabolites were screened and the metabolic pathways were analyzed to explore the anti-tumor mechanism of curcumin. Methyl thiazol tetrazolium(MTT) assay was used to detect the 50% inhibiting concentration(IC_(50)) of curcumin on 12 human tumor cells. After treatment with curcumin for 48 h, the cells were collected and analyzed by GC-MS, followed by pathway analysis and multivariate data analysis including principal component analysis(PCA), orthogonal partial least squares discriminant analysis(OPLS-DA) and One-way analysis of variance(ANOVA),etc. Overall, 34 metabolites showed significant concentration changes after intervention for 48 h, mainly involving multiple metabolic pathways, including lysine degradation, glycine, serine and threonine metabolism, arginine and proline metabolism, cysteine and methionine metabolism, aminoacyl-tRNA biosynthesis, primary bile acid biosynthesis, lysine biosynthesis. In this study, the anti-tumor mechanisms of curcumin interfering with energy metabolism, amino acid metabolism, microtubule system, protein synthesis and oxidative stress response of tumor cells were analyzed from the perspective of metabolism, providing a new reference for further tumor pharmacology study.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Curcumin/pharmacology , Metabolome , Cell Line, Tumor , Gas Chromatography-Mass Spectrometry , Humans , Metabolic Networks and Pathways , Metabolomics , Principal Component Analysis
9.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1106-1107: 35-42, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30639948

ABSTRACT

Qiangshen tablet, an important prescription consisting of 14 kinds of Chinese herbal medicines, has been used for decades to treat kidney yang deficiency syndrome (KYDS) in China. Qiangshen tablet has been recorded in ChP (2015 edition) and possesses the effect of strengthening yang, invigorating qi and tonifying kidneys. In this research, a simple, reliable and specific method was established for simultaneous determination of stachydrine, psoralen, isopsoralen, morroniside, paeoniflorin and loganin in normal and KYDS rat plasma after intragastric administration of a Qiangshen tablet suspension by UPLC-MS/MS. Protein precipitation (PP) by acetonitrile and liquid-liquid extraction (LLE) by ethyl acetate - n-butanol (1: 1, v/v) were used for pretreatment of plasma samples. Chromatographic separation of two IS (Internal Standard) and six analytes was achieved using an ACQUITY UPLC® BEH C18 column (2.1 × 100 mm, 1.7 µm). The mobile phase consisted of 0.1% formic acid aqueous solution (solvent A) and acetonitrile (solvent B) with a gradient scheme. Multiple reaction monitoring (MRM) mode with positive and negative ion source switching was applied to perform the mass spectrometric analyses. This method has been validated with good linearity (r ≥ 0.9942) and acceptable precision and accuracy (RSD ≤ 11%, RE from -4.8% to 7.7%). The mean recovery values of the analytes and IS were all ≥68.28%, and the matrix effects ranged from 94.4% to 101.7%. The stability of the IS and analytes was measured throughout the experiment. The results showed significant differences between the pharmacokinetic traits of the analytes in the normal and KYDS groups, suggesting that pharmacokinetic procedures involving these analytes could be modified in cases of KYDS.


Subject(s)
Drug Monitoring/methods , Drugs, Chinese Herbal , Yang Deficiency/drug therapy , Animals , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal/pharmacokinetics , Ficusin/blood , Furocoumarins/blood , Glucosides/blood , Glycosides/blood , Iridoids/blood , Male , Metabolome , Monoterpenes/blood , Proline/analogs & derivatives , Proline/blood , Rats , Rats, Sprague-Dawley , Tablets/pharmacokinetics , Tandem Mass Spectrometry
10.
Adv Healthc Mater ; 7(24): e1800990, 2018 12.
Article in English | MEDLINE | ID: mdl-30565899

ABSTRACT

Effective and quick screening and cardiotoxicity assessment are very crucial for drug development. Here, a novel composite hydrogel composed of carbon fibers (CFs) with high conductivity and modulus with polyvinyl alcohol (PVA) is reported. The conductivity of the composite hydrogel PVA/CFs is similar to that of natural heart tissue, and the elastic modulus is close to that of natural heart tissue during systole, due to the incorporation of CFs. PVA/CFs remarkably enhance the maturation of neonatal rat cardiomyocytes (NRCM) in vitro by upregulating the expression of α-actinin, troponin T, and connexin-43, activating the signaling pathway of α5 and ß1 integrin-dependent ILK/p-AKT, and increasing the level of RhoA and hypoxia-inducible factor-1α. As a result, the engineered cell sheet-like constructs NRCM@PVA/CFs display much more synchronous, stable, and robust beating behavior than NRCM@PVA. When exposed to doxorubicin or isoprenaline, NRCM@PVA/CFs can retain effective beating for much longer time or change the contractile rate much faster than NRCM@PVA, respectively, therefore representing a promising heart-like platform for in vitro drug screening and cardiotoxicity assessment.


Subject(s)
Hydrogels/chemistry , Tissue Scaffolds/chemistry , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Carbon Fiber/chemistry , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Connexin 43/metabolism , Drug Evaluation, Preclinical , Elastic Modulus , Electric Conductivity , Hydrogels/pharmacology , Mechanotransduction, Cellular/drug effects , Muscle Contraction/drug effects , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Polyvinyl Alcohol/chemistry , Rats , Tissue Engineering , Up-Regulation/drug effects
11.
J Ethnopharmacol ; 224: 140-148, 2018 Oct 05.
Article in English | MEDLINE | ID: mdl-29852266

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese medicine has been utilized for the treatment of cancer. Jianpi Jiedu decoction (JPJD), a traditional Chinese medicine formula, has been used for the treatment of colorectal cancer for decades. However, the underlying molecular mechanistic basis for the effect of JPJD on colorectal cancer is poorly understood. AIM OF THE STUDY: The aim of this study was to identify the effects of JPJD on human colon cancer cells in vitro as well as in vivo and to investigate the mechanistic basis for the anticancer effect of JPJD. MATERIALS AND METHODS: The in vitro antitumor activity of JPJD was assessed by MTT assay, flow cytometric analysis, wound-healing assay, transwell assays, and tube formation assays in order to assess cell activity, apoptosis, migration, invasion, and angiogenesis, respectively. The anticancer properties of JPJD in vivo were assessed by immunohistochemistry in a nude mouse xenograft model of HCT116 cells. In addition, the level of mTOR/HIF-1α/VEGF signaling pathway proteins in HCT116 cells and tumor tissue was evaluated by immunoblotting. RESULTS: In vitro, JPJD significantly inhibited colorectal cancer cell lines viability and proliferation. Flow cytometry analysis demonstrated JPJD to induce HCT116 cell apoptosis. Additionally, JPJD effectively suppressed tumor cell migration, invasion, and angiogenesis by inhibiting the mTOR/HIF-1α/VEGF signaling pathway. In vivo, JPJD significantly inhibited HCT116 tumor growth in athymic nude mice, decreased the levels of CD34 as well as VEGF, and downregulated the mTOR/HIF-1α/VEGF pathway. CONCLUSIONS: JPJD treatment produced anti-colorectal tumor effects by inhibiting tumorigenesis, metastasis, as well as angiogenesis through the mTOR/HIF-1α/VEGF pathway. Thus, these results provide a strong rationale for the therapeutic use of JPJD in cancer treatment. Further studies are required to investigate the mechanisms underlying anti-CRC effect of JPJD.


Subject(s)
Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , TOR Serine-Threonine Kinases/metabolism , Vascular Endothelial Growth Factor A/metabolism , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Survival/drug effects , Cells, Cultured , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/physiology , Humans , Male , Medicine, Chinese Traditional , Mice, Inbred BALB C , Mice, Nude , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Neovascularization, Physiologic/drug effects , Signal Transduction/drug effects , Wound Healing/drug effects
12.
Neural Regen Res ; 12(10): 1680-1686, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29171433

ABSTRACT

Bushen Tiansui decoction is composed of six traditional Chinese medicines: Herba Epimedii, Radix Polygoni multiflori, Plastrum testudinis, Fossilia Ossis Mastodi, Radix Polygalae, and Rhizoma Acorus tatarinowii. Because Bushen Tiansui decoction is effective against amyloid beta (Aß) toxicity, we hypothesized that it would reduce hippocampal synaptic damage and improve cognitive function in Alzheimer's disease. To test this hypothesis, we used a previously established animal model of Alzheimer's disease, that is, microinjection of aggregated Aß25-35 into the bilateral brain ventricles of Sprague-Dawley rats. We found that long-term (28 days) oral administration of Bushen Tiansui decoction (0.563, 1.688, and 3.375 g/mL; 4 mL/day) prevented synaptic loss in the hippocampus and increased the expression levels of synaptic proteins, including postsynaptic density protein 95, the N-methyl-D-aspartate receptor 2B subunit, and Shank1. These results suggested that Bushen Tiansui decoction can protect synapses by maintaining the expression of these synaptic proteins. Bushen Tiansui decoction also ameliorated measures reflecting spatial learning and memory deficits that were observed in the Morris water maze (i.e., increased the number of platform crossings and the amount of time spent in the target quadrant and decreased escape latency) following intraventricular injections of aggregated Aß25-35 compared with those measures in untreated Aß25-35-injected rats. Overall, these results provided evidence that further studies on the prevention and treatment of dementia with this traditional Chinese medicine are warranted.

SELECTION OF CITATIONS
SEARCH DETAIL