Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Environ Sci Pollut Res Int ; 30(54): 115585-115599, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37882928

ABSTRACT

Small streams are essential parts of water ecosystems, such as rivers, lakes, and reservoirs, performing vital functions in the attenuation of nutrient pollution. As eutrophication becomes an increasingly severe problem in waters, it is necessary to investigate how to improve nutrient retention potential in streams. In this study, the effect of artificial manipulation was examined on transient storage and nutrient uptake in streams by setting up the stepping stone structures of flying-geese pattern (SG) and the combination mode of SG and bilaterally staggered spur dikes (SG+SD) in the channel. The tracer experiments were performed to confirm the effectiveness of SG and SG+SD in two headwater streams, which are tributaries of the Chaohu Lake basin. Additionally, the transient storage and nutrient uptake potential were assessed by the OTIS (one-dimensional transport with inflow and storage) model and the nutrient spiraling theory. Compared with the control, the implementation of SG in the Banqiao River increased the retention of ammonium (NH4+) and phosphate (PO43). Furthermore, the transient storage capacity and nutrient uptake potential in the Ershibu River were strengthened with the addition of bilaterally staggered spur dikes based on SG. These results highlight the importance of manipulating the geomorphology of the streambed to enhance the nutrient retention potential in streams.


Subject(s)
Ecosystem , Rivers , Animals , Rivers/chemistry , Geese , Environmental Monitoring/methods , Nitrogen/analysis , Nutrients , Phosphorus/analysis
2.
Article in English | MEDLINE | ID: mdl-34653004

ABSTRACT

Acupoint specificity for diseases has consistently been the focus of acupuncture research owing to its excellent prospects for clinical diagnosis and treatment. However, the specificity of cardiovascular and sleep functions in terms of electrical signals at acupoints remains unclear. In this study, five volunteers were recruited and their electrophysiological signals of GV20 (baihui), RN17 (danzhong), PC6 (neiguan), and SP6 (sanyinjiao) and the corresponding sham points, Pittsburgh sleep quality index, blood pressure, and echocardiography were monitored over four periods of 90-day head-down bed rest (HDBR). The results demonstrated that the power and characteristic amplitude of the acupoints were more significant than those of the sham points under normal conditions. And along with the altered physiological condition of the body after HDBR, the differential signal characteristic amplitude (DSCA) and the power of the acupoints were decreased to a larger extent than those of the sham points. In addition, the difference between the power of acupuncture and sham points was also reduced. During the recovery period, except for GV20, the power and DSCA of other acupoints did not return to normal. In terms of DSCA, GV20 is related to human sleep function and other acupoints are related to cardiovascular function. The above results show that the electrophysiological signals of acupoints are disease-specific and more accurately reflect the changes of physiological homeostasis. The research conduces to the development of acupuncture-based disease diagnosis and treatment integrated methods, and the realization of the portable and accurate diagnosis and regulation of diseases in space medicine.


Subject(s)
Acupuncture Therapy , Weightlessness , Acupuncture Points , Electrophysiological Phenomena , Humans , Sleep
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 4583-4586, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30441372

ABSTRACT

Understanding the relationships between different cortical neurons under excitatory or inhibitory modulation is important for researches of many neurological disorders. In order to monitor the neural activities in cortex under gamma-aminobutyric acid (GABA) and glutamate (Glu) modulation, an implantable microelectrode array (MEA) was combined with microinjection capillary. The neurons in motor cortex of rat were modulated by GABA and Glu injection, and multichannel neural electrophysiological signals were simultaneously recorded. Spike analysis showed that the interneurons recorded by the MEA were inhibited after GABA injection and excited after Glu injection, but one pyramidal neuron was found to be not sensitive to the drug. The local field potentials (LFP) were most affected in the frequency band of 5~10 Hz after Glu injection, which greatly increased the amplitudes of the spindle-like waveforms. The MEA combined with microinjection provided a low-cost and effective tool for neurological drug modulation and evaluation in brain tissue.


Subject(s)
Glutamic Acid/pharmacology , Microelectrodes , Motor Cortex/physiology , Neurons/physiology , gamma-Aminobutyric Acid/pharmacology , Animals , Electrodes, Implanted , Male , Microinjections , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL