Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Ultrason Sonochem ; 100: 106605, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37742421

ABSTRACT

This study presents a novel approach for converting cottonseed hulls (CSHs) into valuable proanthocyanidins (PAs) through deep eutectic solvent (DES)-based ultrasound-assisted extraction (UAE-DES). Response surface methodology (RSM) was applied to optimize and model this process, resulting in maximum yields of 78.58 mg/g. The ideal PA extraction conditions were determined to be a liquid-to-material ratio of 36.25 mL/g, a water content of 33.21%, and an extraction period of 7.4 min. Molecular dynamic simulations (MDS) were performed to study the interactions between the solvent and target chemicals. Increased van der Waals forces and stronger interactions between DES and the target chemical catechin (CA) compared to those observed with methanol or water were observed. Furthermore, the optimized extract exhibited a higher PA content than can be obtained with conventional extraction methods and demonstrated antioxidant activity in vitro. The cottonseed hulls residues (CSRs) remaining after the extraction process can be used to produce activated carbon (ACCSR), which has some capacity to adsorb methylene blue (MB) contaminants. This study offers a reference for the fruitful transformation of waste biomass into high-value products.


Subject(s)
Proanthocyanidins , Cottonseed Oil , Deep Eutectic Solvents , Solvents/chemistry , Water/chemistry
2.
J Sci Food Agric ; 103(13): 6463-6472, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37218075

ABSTRACT

BACKGROUND: Waste cotton flowers, as a by-product of cotton cultivation, are enriched with bioactive substances that render them a promising natural source of health-promoting benefits. In this study, ultrasound-assisted extraction (UAE), subcritical water extraction (SWE), and conventional extraction (CE) approaches were applied to extract bioactive compounds from waste cotton flowers, and the metabolic profiles, bioactive components, antioxidants, and α-amylase inhibition of different extractions were systematically analyzed and compared. RESULTS: It was observed that UAE and CE extracts had similar metabolic profiles compared with SWE. The flavonoids and amino acids and derivatives were more prone to be extracted by UAE and CE, whereas phenolic acids tended to accumulate in SWE extract. The UAE extract had the highest amounts of total polyphenols (214.07 mg gallic acid equivalents per gram dry weight) and flavonoids (33.23 mg rutin equivalents per gram dry weight) as well as the strongest inhibition on oxidation (IC50 = 10.80 µg mL-1 ) and α-amylase activity (IC50 = 0.62 mg mL-1 ), indicating that chemical composition was closely related to biological activity. Additionally, microstructures and thermal behaviors of the extracts were investigated and highlighted the ability of UAE. CONCLUSION: Overall, it can be concluded that UAE is an efficient, green, and economical extraction method to produce bioactive compounds from cotton flowers, and the UAE extracts could be used in food and medicine industries because of their high antioxidant and α-amylase inhibitory activity. This study provides a scientific basis for the development and comprehensive utilization of cotton by-products. © 2023 Society of Chemical Industry.


Subject(s)
Antioxidants , Gossypium , alpha-Amylases , Antioxidants/chemistry , Flavonoids/analysis , Flowers/chemistry , Metabolome , Phenols/chemistry , Plant Extracts/chemistry , Water/analysis
3.
J Sep Sci ; 39(16): 3205-11, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27334034

ABSTRACT

A simple, rapid, organic-solvent- and sample-saving pretreatment technique, called dispersive liquid-liquid microextraction, was developed for the determination of six synthetic phenolic antioxidants from edible oils before high-performance liquid chromatography with diode array detection. The entire procedure was composed of a two-step microextraction and a centrifugal process and could be finished in about 5 min, only consuming only 25 mg of sample and 1 mL of the organic solvent for each extraction. The influences of several important parameters on the microextraction efficiency were thoroughly investigated. Recovery assays for oil samples were spiked at three concentration levels, 50, 100 and 200 mg/kg, and provided recoveries in the 86.3-102.5% range with a relative standard deviation below 3.5%. The intra-day and inter-day precisions for the analysis were less than 3.8%. The proposed method was successfully applied for the determination of synthetic phenolic antioxidants in different oil samples, and satisfactory results were obtained. Thus, the developed method represents a viable alternative for the quality control of synthetic phenolic antioxidant concentrations in edible oils.


Subject(s)
Antioxidants/chemistry , Antioxidants/isolation & purification , Chromatography, High Pressure Liquid/methods , Liquid Phase Microextraction/methods , Plant Oils/chemistry , Antioxidants/chemical synthesis , Chromatography, High Pressure Liquid/instrumentation , Limit of Detection , Phenols/chemistry
4.
Luminescence ; 29(8): 1027-32, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24723449

ABSTRACT

A highly sensitive and convenient high-performance liquid chromatography technique coupled with chemiluminescence detection for the simultaneous determination butylated hydroquinone (TBHQ) and butylated hydroxyanisole (BHA) in oil is established. The detection is based on the inhibitory effect on the CL reaction between luminol and potassium ferricyanide in an alkaline medium. Samples were separated through a reverse-phase C18 column using a mobile phase of methanol and water (80: 20, v/v) at a flow rate of 0.5 mL/min. The effects of various parameters including mobile phase, flow rate and chemiluminescence regent were studied. Under optimum conditions, both TBHQ and BHA showed good linear relationships in the range 1 × 10(-7) -1 × 10(-5) g/mL with detection limits of 24 and 33 ng/mL, respectively. The proposed method is simple and sensitive, with low costs. The method was successfully applied for the quantification of TBHQ and BHA in sesame oil. The possible inhibition mechanism is also discussed briefly.


Subject(s)
Butylated Hydroxyanisole/analysis , Chromatography, High Pressure Liquid/methods , Hydroquinones/analysis , Luminescent Measurements/methods , Antioxidants/analysis , Antioxidants/chemistry , Butylated Hydroxyanisole/chemistry , Calibration , Food Analysis/methods , Hydroquinones/chemistry , Limit of Detection , Reproducibility of Results , Sensitivity and Specificity , Sesame Oil/analysis
SELECTION OF CITATIONS
SEARCH DETAIL