Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Chin Med ; 18(1): 120, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37730607

ABSTRACT

BACKGROUND: Myocardial ischemia/reperfusion injury (MI/RI) is involved in a variety of pathological states for which there is no effective treatment exists. Shuangshen Ningxin (SSNX) capsule which is developed by Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine has been demonstrated to alleviate MI/RI, but its mechanism remains to be further elucidated. METHODS: The MI/RI miniature pigs model was constructed to assess the pharmacodynamics of SSNX by blocking the proximal blood flow of the left anterior descending branch of the cardiac coronary artery through an interventional balloon. The principal chemical compounds and potential targets of SSNX were screened by HPLC-MS and SwissTargetPrediction. The targets of MI/RI were identified based on Online Mendelian Inheritance in Man (OMIM) and GeneCards. Cytoscape 3.9.0 was applied to construct a protein-protein interaction (PPI) network, and Gene Ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed using metascape. To further validate the mechanism of SSNX, Molecular docking, Transmission electron microscopy, and Western blot analysis were used to test the effectiveness of targets in related pathways. RESULTS: Our results indicated that SSNX significantly improved cardiac function, attenuated myocardial I/R injury. Through network analysis, a total of 15 active components and 201 targets were obtained from SSNX, 75 of which are potential targets for the treatment of MI/RI. KEGG and MCODE analysis showed that SSNX is involved in the mitophagy signaling pathway, and ginsenoside Rg1, ginsenoside Rb1 and ginsenoside Rb2 are key components associated with the mitophagy. Further experimental results proved that SSNX protected mitochondrial structure and function, and significantly reduced the expression of mitophagy-related proteins PTEN-induced putative kinase 1 (PINK1), Parkin, FUN14 domain containing 1 (FUNDC1) and Bcl-2/E1B-19 kDa interacting protein 3 (BNIP3) in MI/RI miniature pigs. CONCLUSION: In our study, the integration of network pharmacology and experiments in vivo demonstrated that SSNX interfered with MI/RI by inhibiting mitophagy.

2.
Plant Cell Physiol ; 62(11): 1687-1701, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34370862

ABSTRACT

Male sterility, as a common reproductive characteristic in plants, plays an important role in breeding, in which pollen abortion is a key factor leading to male sterility. Here, based on a low expression level gene CmACOS5 in transcriptome of pollen abortive chrysanthemum, a new transcription factor CmLBD2 of the Lateral Organ Boundaries Domain family, which could bind the promoter of CmACOS5 by yeast one-hybrid library was screened. This study revealed the origin and expression pattern of CmLBD2 in chrysanthemum and verified the functions of two genes in pollen development by transgenic means. Inhibiting the expression of CmACOS5 or CmLBD2 can lead to a large reduction in pollen and even abortion in chrysanthemum. Using yeast one-/two-hybrid, electrophoretic mobility shift assays, and luciferase reporter assays, it was verified that CmLBD2 directly binds to the promoter of CmACOS5. These results suggest that LBD2 is a novel, key transcription factor regulating pollen development. This result will provide a new research background for enriching the function of LBD family proteins and also lay a new foundation for the breeding of male sterile lines and the mechanism of pollen development.


Subject(s)
Chrysanthemum/growth & development , Chrysanthemum/genetics , Coenzyme A Ligases/genetics , Plant Proteins/genetics , Pollen/growth & development , Transcription Factors/genetics , Chrysanthemum/enzymology , Chrysanthemum/metabolism , Coenzyme A Ligases/metabolism , Plant Proteins/metabolism , Pollen/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL