Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Affiliation country
Publication year range
1.
J Ethnopharmacol ; 323: 117718, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38181933

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: It has been reported that apoptosis and oxidative stress are related to cyclophosphamide (CYC)-induced premature ovarian failure (POF). Therefore, anti-apoptotic and anti-oxidative stress treatments exhibit therapeutic efficacy in CYC-induced POF. Danggui Shaoyao San (DSS), which has been extensively used to treat gynecologic diseases, is found to inhibit apoptosis and reduce oxidative stress. However, the roles of DSS in regulating apoptosis and oxidative stress during CYC-induced POF, and its associated mechanisms are still unknown. AIM OF THE STUDY: This work aimed to investigate the roles and mechanisms of DSS in inhibiting apoptosis and oxidative stress in CYC-induced POF. MATERIALS AND METHODS: CYC (75 mg/kg) was intraperitoneally injected in mice to construct the POF mouse model for in vivo study. Thereafter, alterations of body weight, ovary morphology and estrous cycle were monitored to assess the ovarian protective properties of DSS. Serum LH and E2 levels were analyzed by enzyme-linked immunosorbent assay (ELISA). Hematoxylin-eosin (HE) staining was employed for examining ovarian pathological morphology and quantifying follicles in various stages. Meanwhile, TUNEL staining and apoptosis-related proteins were adopted for evaluating apoptosis. Oxidative stress was measured by the levels of ROS, MDA, and 4-HNE. Western blot (WB) assay was performed to detect proteins related to the SIRT1/p53 pathway. KGN cells were used for in vitro experiment. TBHP stimulation was carried out for establishing the oxidative stress-induced apoptosis cell model. Furthermore, MTT assay was employed for evaluating the protection of DSS from TBHP-induced oxidative stress. The anti-apoptotic ability of DSS was evaluated by hoechst/PI staining, JC-1 staining, and apoptosis-related proteins. Additionally, the anti-oxidative stress ability of DSS was measured by detecting the levels of ROS, MDA, and 4-HNE. Proteins related to SIRT1/p53 signaling pathway were also measured using WB and immunofluorescence (IF) staining. Besides, SIRT1 expression was suppressed by EX527 to further investigate the role of SIRT1 in the effects of DSS against apoptosis and oxidative stress. RESULTS: In the in vivo experiment, DSS dose-dependently exerted its anti-apoptotic, anti-oxidative stress, and ovarian protective effects. In addition, apoptosis, apoptosis-related protein and oxidative stress levels were inhibited by DSS treatment. DSS treatment up-regulated SIRT1 and down-regulated p53 expression. From in vitro experiment, it was found that DSS treatment protected KGN cells from TBHP-induced oxidative stress injury. Besides, DSS administration suppressed the apoptosis ratio, apoptosis-related protein levels, mitochondrial membrane potential damage, and oxidative stress. SIRT1 suppression by EX527 abolished the anti-apoptotic, anti-oxidative stress, and ovarian protective effects, as discovered from in vivo and in vitro experiments. CONCLUSIONS: DSS exerts the anti-apoptotic, anti-oxidative stress, and ovarian protective effects in POF mice, and suppresses the apoptosis and oxidative stress of KGN cells through activating SIRT1 and suppressing p53 pathway.


Subject(s)
Menopause, Premature , Primary Ovarian Insufficiency , Humans , Female , Mice , Animals , Primary Ovarian Insufficiency/chemically induced , Primary Ovarian Insufficiency/drug therapy , Primary Ovarian Insufficiency/prevention & control , Tumor Suppressor Protein p53/metabolism , Reactive Oxygen Species/metabolism , Sirtuin 1/metabolism , Oxidative Stress , Apoptosis , Cyclophosphamide/toxicity , Signal Transduction
2.
Biochim Biophys Acta Gen Subj ; 1868(4): 130564, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38272191

ABSTRACT

Selenium (Se) is involved in many physiopathologic processes in humans and animals and is strongly associated with the development of heart disease. Lipopolysaccharides (LPS) are cell wall components of gram-negative bacteria that are present in large quantities during environmental pollution. To investigate the mechanism of LPS-induced cardiac injury and the efficacy of the therapeutic effect of SeMet on LPS, a chicken model supplemented with selenomethionine (SeMet) and/or LPS treatment, as well as a primary chicken embryo cardiomyocyte model with the combined effect of SeMet / JAK2 inhibitor (INCB018424) and/or LPS were established in this experiment. CCK8 kit, Trypan blue staining, DCFH-DA staining, oxidative stress kits, immunofluorescence staining, LDH kit, real-time fluorescence quantitative PCR, and western blot were used. The results proved that LPS exposure led to ROS explosion, hindered the antioxidant system, promoted the expression of the JAK2 pathway, and increased the expression of genes involved in the pyroptosis pathway, inflammatory factors, and heat shock proteins (HSPs). Upon co-treatment with SeMet and LPS, SeMet reduced LPS-induced pyroptosis and inflammation and restored the expression of HSPs by inhibiting the ROS burst and modulating the antioxidant capacity. Co-treatment with INCB018424 and LPS resulted in inhibited of the JAK2 pathway, attenuating pyroptosis, inflammation, and high expression of HSPs. Thus, LPS induced pyroptosis, inflammation, and changes in HSPs activity by activating of the JAK2 / STAT3 / A20 signaling axis in chicken hearts. Moreover, SeMet has a positive effect on LPS-induced injury. This work further provides a theoretical basis for treating cardiac injury by SeMet.


Subject(s)
Antioxidants , Nitriles , Pyrazoles , Pyrimidines , Selenomethionine , Animals , Chick Embryo , Antioxidants/metabolism , Chickens/metabolism , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Janus Kinase 2/metabolism , Lipopolysaccharides/toxicity , Myocytes, Cardiac/metabolism , Oxidative Stress , Pyroptosis , Reactive Oxygen Species/metabolism , Selenomethionine/pharmacology , Selenomethionine/analysis , Selenomethionine/metabolism , STAT3 Transcription Factor/metabolism
3.
J Agric Food Chem ; 72(1): 284-299, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38109331

ABSTRACT

microRNA (miRNA) controls the post-transcriptional translation of mRNA to affect the expression of many genes participating in functional interaction pathways. Selenoproteins are characterized by their antioxidant activity, wherein selenoprotein T (SelT) is an essential membrane-bound selenoprotein serving as a guardian of intracellular homeostasis. During muscle development and regeneration, myoblasts enter the cell cycle and rapidly proliferate. However, the role of SelT in muscle development and selenium (Se) deficiency-induced muscle damage remains poorly investigated. This study established Se deficient broiler models, chicken embryos models, and cultured chicken primary myoblasts in vitro. We showed that Se deficiency induced skeletal muscle damage in broilers, promoted miR-365-3p expression, and downregulated the level of SelT, significantly. The absence of SelT led to the accumulation of mitochondrial superoxide and downregulated mitochondrial dynamics gene expression, which, in turn, induced the disruption of mitochondria potential and blocked the oxidative phosphorylation (OXPHOS) process. Limited ATP production rate caused by mitochondrial ROS overproduction went along with cell cycle arrest, cell proliferation slowness, and myocyte apoptosis increase. Using Mito-TEMPO for mitochondrial ROS elimination could effectively mitigate the above adverse reactions and significantly restore the proliferation potential of myoblasts. Moreover, we identified miR-365-3p, a miRNA that targeted SelT mRNA to inhibit myoblast proliferation by disrupting intracellular redox balance. The omics analysis results showed that Se deficiency led to the significant enrichment of "cell cycle", "oxidative stress response", and "oxidative phosphorylation" pathway genes. Finally, we proved that the effect of the miR-365-3p/SelT signaling axis on muscle development did exist in the chicken embryo stage. In summary, our findings revealed that miR-365-3p was involved in broiler skeletal muscle damage in Se deficiency by targeting SelT, and SelT, serving as an intracellular homeostasis guardian, resisted mitochondrial oxidative stress, and protected ATP generation, promoting myoblast proliferation and inhibiting apoptosis. This study provides an attractive target for the cultivated meat industry and regenerative medicine.


Subject(s)
MicroRNAs , Selenium , Chick Embryo , Animals , Chickens/genetics , Chickens/metabolism , Reactive Oxygen Species , Selenium/pharmacology , MicroRNAs/genetics , MicroRNAs/metabolism , Diet , Selenoproteins/genetics , Selenoproteins/metabolism , RNA, Messenger , Cell Proliferation , Apoptosis , Myoblasts/metabolism , Adenosine Triphosphate
4.
Fish Shellfish Immunol ; 142: 109101, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37758100

ABSTRACT

The toxic heavy metal lead is widely found in rivers and soils as an environmental pollutant, posing a threat to the health of aquatic organisms. Selenium is an essential trace element and a powerful antioxidant that has been shown to have anti-inflammatory and antioxidant properties as well as alleviating heavy metal poisoning. Many studies have shown that lead poisoning produces inflammatory responses and damage to the kidneys of a wide range of animals, but the effects on cellular pyroptosis and immune function and selenium antagonism in CIK cells are not clear. In this study, 500 µM Pb and 20 nM Se were applied to grass carp kidney cells, and the results showed that Pb exposure to CIK cells resulted in oxidative stress, activation of the IRAK1/TAK1/IKK pathway, up-regulation of the expression of cellular pyroptosis markers GSDMD and NLRP3, and cellular pyroptosis of CIK cells, as well as up-regulation of IL-1ß and IL-18, and the generation of cellular inflammatory response. In contrast, Se treatment significantly reduced the ROS level, the expression of cellular pyroptosis markers GSDMD, NLRP3 and inflammatory element IL-1ß and IL-18. Taken together, Se alleviated cellular pyroptosis and immune dysfunction caused by Pb exposure through oxidative stress and activation of the IRAK1/TAK1/IKK pathway. This study complements the harmful effects of the heavy metal Pb on fish and the real-life application of selenium in the healthy culture of fish as a reference will be provided.


Subject(s)
Cytokine-Induced Killer Cells , Selenium , Animals , Selenium/pharmacology , Antioxidants , Pyroptosis , Interleukin-18 , Cytokine-Induced Killer Cells/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Lead/toxicity , Inflammation/chemically induced
5.
Sci Total Environ ; 905: 166890, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37683847

ABSTRACT

Bisphenol A (BPA), a component of plastic products, can penetrate the blood-brain barrier and pose a threat to the nervous system. Selenium (Se) deficiency can also cause nervous system damage. Resulting from the rapid industrial development, BPA pollution and Se deficiency often coexist. However, it is unclear whether brain damage in chickens caused by BPA exposure and Se deficiency is related to the crosstalk disorder between mitophagy and apoptosis. In this study, 60 chickens (1 day old) were fed with a diet that contained 20 mg/kg BPA but was insufficient in Se (only 0.039 mg/kg) for 42 days to establish a chicken brain injury model. In vitro, the primary chicken embryo brain neurons were treated for 24 h with Se-deficient medium containing 75 µM BPA. The results showed that BPA exposure and Se deficiency inhibited the expression of the mitochondrial respiratory chain complex in brain neurons, and a large number of mitochondrial reactive oxygen species were released. Furthermore, the expression levels of mitochondrial fusion proteins (OPA1, Mfn1, and Mfn2) decreased, while the expression levels of mitochondrial fission proteins (Drp1, Mff, and Fis1) increased, thus exacerbating mitochondrial division. In addition, the results of immunofluorescence and flow cytometry analysis, as well as the elevated expressions of mitophagy related genes (PINK1, Parkin, ATG5, and LC3II/I) and pro-apoptotic markers (Bax, Cytc, Caspase3, and Caspase9) indicated that BPA exposure and Se deficiency disrupted the crosstalk homeostasis between mitophagy and apoptosis. However, this crosstalk homeostasis was restored after Mito-Tempo and Rapamycin treatment. In contrast, 3-methyladenine treatment exacerbated this crosstalk disorder. In conclusion, BPA exposure and Se deficiency can induce mitochondrial reactive oxygen species bursts and disorders of mitochondrial dynamics by destroying the mitochondrial respiratory chain complex. The result is indicative of an imbalance in mitochondrial autophagy and apoptosis crosstalk homeostasis, which damages the chicken brain.


Subject(s)
Benzhydryl Compounds , Brain Injuries , Phenols , Selenium , Chick Embryo , Animals , Mitophagy , Reactive Oxygen Species/metabolism , Chickens/metabolism , Selenium/pharmacology , Apoptosis , Homeostasis
6.
Physiol Genomics ; 55(7): 286-296, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37092745

ABSTRACT

Preeclampsia is a pregnancy-specific disease, which has become an essential cause of perinatal and neonatal death. Gut microflora becomes the regulator of host immunity through the metabolic pathway. Epidemiological studies provide convincing evidence that vitamin D supplementation can prevent the onset of preeclampsia. However, research on the microbial mechanisms and effective treatment strategies for placental inflammation induced by lipopolysaccharide is lacking. In this study, pregnant rats were induced by LPS to establish a rat model of preeclampsia. Sixteen-sequence analysis was used to determine the composition of microflora in feces. In addition, the protective effect of vitamin D supplementation on LPS-preeclampsia rats was evaluated. The results showed that the blood pressure and creatinine of pregnant rats in the LPS group were significantly higher than those in the control group. In addition, LPS disturbed the intestinal microbial community and reduced microbial diversity. Vitamin D supplementation improves the symptoms of preeclampsia, increases the abundance of intestinal beneficial flora, normalizes the level of inflammatory factors LPS-induced by inhibiting the TLR4/MYD88/NF-κB pathway, and effectively resists the disturbance of uterine spiral artery remodeling induced by LPS. This study established that vitamin D-mediated microbial mechanisms and their inhibition are potential therapeutic targets for the treatment of preeclampsia.


Subject(s)
Placenta , Pre-Eclampsia , Humans , Rats , Pregnancy , Animals , Female , Placenta/metabolism , Lipopolysaccharides/pharmacology , Vitamin D/adverse effects , Pre-Eclampsia/chemically induced , Pre-Eclampsia/drug therapy , Pre-Eclampsia/metabolism , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , NF-kappa B/metabolism , Vitamins
7.
J Cell Physiol ; 238(6): 1256-1274, 2023 06.
Article in English | MEDLINE | ID: mdl-37012668

ABSTRACT

Both bisphenol A (BPA) and selenium (Se) deficiency can affect the expression of microRNAs (miRNAs), which can specifically regulate its target mRNA and induce apoptosis, and play a significant role in cardiovascular injury diseases. To explore the mechanism of apoptosis induced by BPA and Se deficiency in chicken arterial endothelial tissue and the role of miRNAs in this process, the model of BPA exposure/Se deficiency in chicken and PAEC cells have been employed. The targeting relationship between miR-215-3p and iodothyronine deiodinase 1 (Dio1) in PAEC was verified by double luciferase gene report. The level of miR-215-3p was detected by qRT-PCR. The oxidative stress level of arterial endothelial cells was detected by oxidative stress kit and DCFH-DA probe method. The PI3K/AKT pathway, mitochondrial dynamics, and apoptosis-related genes were detected by qRT-PCR and western blot. The mitochondrial ATP level and nitric oxide synthases (NOSs) level were detected with the kit. TUNEL, acridine orange/ethidium bromide, and flow cytometry were used to detect the level of apoptosis. The results showed that BPA exposure and Se deficiency led to overexpression of miR-215-3p, aggravated oxidative stress, inhibited activation of PI3K/AKT pathway, promoted mitochondrial division, increased expression of apoptosis related genes, and finally led to apoptosis of chicken arterial endothelial cells. We also established knockdown/overexpression models of miR-215-3p and Dio1 in vitro, and found that overexpression of miR-215-3p and knockout of Dio1 can induce apoptosis. Interestingly, miR-215-3p-Inhibitor and N-acetyl- l-cysteine (NAC) partially prevented apoptosis caused by BPA exposure and Se deficiency, and LY294002 aggravated apoptosis. These results suggest that BPA exposure aggravates the apoptosis of Se deficient arterial endothelial cells in chickens by regulating the ROS/PI3K/AKT pathway activated by miR-215-3p/Dio1. The miR-215-3p/Dio1 axis provides a new way to understand the toxic mechanism of BPA exposure and Se deficiency, and reveals a new regulatory model of apoptosis damage in vascular diseases.


Subject(s)
Benzhydryl Compounds , MicroRNAs , Phenols , Selenium , Animals , Apoptosis/genetics , Chickens/genetics , Endothelial Cells/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Reactive Oxygen Species/metabolism , Selenium/metabolism , Benzhydryl Compounds/toxicity , Phenols/toxicity
8.
Mol Cancer ; 22(1): 68, 2023 04 06.
Article in English | MEDLINE | ID: mdl-37024932

ABSTRACT

The development of head and neck squamous cell carcinoma (HNSCC) is a multi-step process, and its survival depends on a complex tumor ecosystem, which not only promotes tumor growth but also helps to protect tumor cells from immune surveillance. With the advances of existing technologies and emerging models for ecosystem research, the evidence for cell-cell interplay is increasing. Herein, we discuss the recent advances in understanding the interaction between tumor cells, the major components of the HNSCC tumor ecosystem, and summarize the mechanisms of how biological and abiotic factors affect the tumor ecosystem. In addition, we review the emerging ecological treatment strategy for HNSCC based on existing studies.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Humans , Squamous Cell Carcinoma of Head and Neck/therapy , Head and Neck Neoplasms/therapy , Carcinoma, Squamous Cell/pathology , Relaxation Therapy , Ecosystem
9.
Ultrason Sonochem ; 94: 106344, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36871526

ABSTRACT

The 2030 Agenda for Sustainable Development envisions a rational use of energy and resources in all technological processes. However, in the extraction methods of compounds from medicinal plants and herbs, there is an urgent to reduce the use of organic solvents and increase the energy efficiency of these methods. Therefore, a sustainable extraction method (enzyme and ultrasonic co-assisted aqueous two-phase extraction, EUA-ATPE) of simultaneous extraction and separation of ferulic acid and ligustilide from Angelicae Sinensis Radix (ASR) was developed by integrating enzyme-assisted extraction (EAE) with ultrasonic-assisted aqueous two-phase extraction (UAE- ATPE). The effects of different enzymes, extraction temperature, pH, ultrasonic time, liquid-to-materials ratio, etc., were optimized by single-factor experiments and central composite design (CCD). Under the optimum conditions, the highest comprehensive evaluation value (CEV) and extraction yield were obtained by EUA-ATPE. Furthermore, recovery (R), partition coefficient (K), and scanning electron microscopy (SEM) analysis revealed that enzyme and ultrasonic treatment improved mass transfer diffusion and increased the degree of cell disruption. Besides, the EUA-ATPE extracts have shown great antioxidant and anti-inflammatory activity in vitro. Finally, compared to different extraction methods, EUA-ATPE achieved higher extraction efficiency and higher energy efficiency due to the synergistic effect between EAE and UAE-ATPE. Therefore, the EUA-ATPE provides a sustainable method for extracting bioactive compounds from medicinal plants and herbs, contributing to Sustainable Development Goals (SDG), including SDG-6, SDG-7, SDG-9, SDG-12, and SDG-15.


Subject(s)
Antioxidants , Plant Extracts , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antioxidants/pharmacology , Anti-Inflammatory Agents/pharmacology
10.
Environ Pollut ; 324: 121392, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36906056

ABSTRACT

The earth's natural environmental factors and man-made industrial pollution often lead to the co-occurrence of environmental pathogenic factors and malnutrition. Bisphenol A (BPA) is a serious environmental endocrine disruptor, and its exposure can cause liver tissue damage. Selenium (Se) deficiency is a worldwide problem that afflicts thousands of people, and Se deficiency can cause M1/M2 imbalance. In addition, the crosstalk between hepatocyte and immune cell is closely related to the occurrence of hepatitis. Therefore, this study found for the first time that the combined exposure of BPA and Se deficiency caused liver pyroptosis and M1 polarization through ROS, and the crosstalk between pyroptosis and M1 polarization aggravated liver inflammation in chicken. In this study, the BPA or/and Se deficiency chicken liver, single and co-culture model of LMH and HD11 cells were established. The results displayed that BPA or Se deficiency induced liver inflammation accompanied by pyroptosis and M1 polarization through oxidative stress, and increased expressions of chemokines (CCL4, CCL17, CCL19, and MIF) and inflammatory factors (IL-1ß and TNF-α). The vitro experiments further verified the above changes and showed that LMH pyroptosis promoted M1 polarization of HD11 cells, and vice versa. NAC counteracted pyroptosis and M1 polarization caused by BPA and low-Se, reducing the release of inflammatory factors. In brief, BPA and Se deficiency treatment can exacerbate liver inflammation by increasing oxidative stress to induce pyroptosis and M1 polarization.


Subject(s)
Pyroptosis , Selenium , Animals , Reactive Oxygen Species/metabolism , Chickens , Selenium/metabolism , Inflammation/chemically induced , Inflammation/metabolism , Liver/metabolism
11.
Phytomedicine ; 108: 154493, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36265256

ABSTRACT

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is a malignancy with high incidence in several regions of China, and the prognosis of patients with ESCC is unfavorable. Evodiamine (Evo), a small molecule derived from the traditional Chinese herb Evodia rutaecarpa, has shown anti-cancer efficacy in numerous human malignancies but not in ESCC. PURPOSE: To determine whether Evo induces cell-cycle arrest and apoptosis in ESCC in vitro and in vivo and elucidate the underlying mechanisms. METHODS: ATPlite and colony formation assay were used to validate the inhibiting effect of Evo on three ESCC cells in vitro; Two subcutaneous tumor models of ESCC cells were used to evaluate the anti-ESCC effect of Evo and assess the biosafety of Evo in vivo; RNAseq and Database of KEGG pathway analysis provided a direction for the mechanistic study of Evo; FACS was used to detect Evo-induced cell cycle arrest and cell apoptosis in ESCC cells; Western blot and QPCR were respectively used to detect the level of related genes and proteins in Evo-treated ESCC cells; SiRNA and other experimental techniques were used to identify the molecular mechanism of Evo-induced ESCC cell cycle arrest and cell apoptosis. RESULTS: Evo significantly suppressed the growth of ESCC both in vitro and in vivo. Mechanistically, Evo induced M-phase cell-cycle arrest by inactivation of CUL4A E3 ligase, which mediates degradation blockage of p53 and transcriptional activation of p21. With the prolonged treatment time, Evo triggered both Noxa-dependent intrinsic and DR4-dependent extrinsic cell apoptosis in two ESCC cell lines. CONCLUSION: Our findings revealed the anti-tumor efficacy and mechanisms of Evo, providing a solid scientific basis for Evo as an attractive choice for ESCC treatment.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/drug therapy , Tumor Suppressor Protein p53 , Esophageal Neoplasms/drug therapy , Cell Line, Tumor , Apoptosis , Cell Cycle Checkpoints , Cell Proliferation , Cullin Proteins
12.
Front Pharmacol ; 13: 952061, 2022.
Article in English | MEDLINE | ID: mdl-36091757

ABSTRACT

Atractylodes macrocephala Koidz (AM), traditional Chinese medicine (TCM) with many medicinal values, has a long usage history in China and other oriental countries. The phytochemical investigation revealed the presence of volatile oils, polysaccharides, lactones, flavonoids, and others. The polysaccharides from AM are important medicinal components, mainly composed of glucose (Glc), galactose (Gal), rhamnose (Rha), arabinose (Ara), mannose (Man), galacturonic acid (GalA) and xylose (Xyl). It also showed valuable bioactivities, such as immunomodulatory, antitumour, gastroprotective and intestinal health-promoting, hepatoprotective, hypoglycaemic as well as other activities. At the same time, based on its special structure and pharmacological activity, it can also be used as immune adjuvant, natural plant supplement and vaccine adjuvant. The aim of this review is to summarize and critically analyze up-to-data on the chemical compositions, biological activities and applications of polysaccharide from AM based on scientific literatures in recent years.

13.
Phytomedicine ; 104: 154277, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35752078

ABSTRACT

BACKGROUND: Excessive myocardial fibrosis is the pathological basis of heart failure following myocardial infarction (MI). Although calycosin improves cardiac function, its effect on cardiac fibrosis and cardiac function after MI in mice and its precise mechanism remain unclear. PURPOSE: Here, we firstly investigated the effects of calycosin on cardiac fibrosis and ventricular function in mice after MI and the role of transforming growth factor-beta receptor 1 (TGFBR1) signaling in the amelioration of cardiac fibrosis and ventricular function. METHODS: In vivo effects of calycosin on cardiac structure and function in mice with MI induced by left anterior descending coronary artery ligation were determined by hematoxylin and eosin staining, Masson trichrome staining, and echocardiography. The molecular mechanism of the interaction between TGFBR1 and calycosin was investigated using molecular docking, molecular dynamics (MD) simulation, surface plasmon resonance imaging (SPRi), immunohistochemistry, and western blotting (WB). Subsequently, cardiac-specific Tgfbr1 knockout mice were used to verify the effects of calycosin. The effect of calycosin on primary cardiac fibroblasts (CFs) proliferation and collagen deposition was detected using cell counting (CCK-8), EdU assay, and WB in vitro. CFs infected with an adenovirus that encodes TGFBR1 were used to verify the effects of calycosin. RESULTS: In vivo, calycosin attenuated myocardial fibrosis and cardiac dysfunction following MI in a dose-dependent pattern. Calycosin-TGFBR1 complex was found to have a binding energy of -9.04 kcal/mol based on molecular docking. In addition, calycosin bound steadily in the cavity of TGFBR1 during the MD simulation. Based on SPRi results, the solution equilibrium dissociation constant for calycosin and TGFBR1 was 5.11 × 10-5 M. Calycosin inhibited the expression of TGFBR1, Smad2/3, collagen I, and collagen III. The deletion of TGFBR1 partially counteracted these effects. In vitro, calycosin suppressed CFs proliferation and collagen deposition after TGF-ß1 stimulation by suppressing the TGFBR1 signaling pathway. The suppressive effects of calycosin were partially rescued by overexpression of TGFBR1. CONCLUSION: Calycosin attenuates myocardial fibrosis and cardiac dysfunction following MI in mice in vivo via suppressing the TGFBR1 signaling pathway. Calycosin suppresses CFs proliferation and collagen deposition induced by TGF-ß1 via inhibition of the TGFBR1 signaling pathway in vitro.


Subject(s)
Myocardial Infarction , Animals , Collagen/metabolism , Fibrosis , Isoflavones , Mice , Molecular Docking Simulation , Myocardial Infarction/metabolism , Myocardium/metabolism , Receptor, Transforming Growth Factor-beta Type I/metabolism , Signal Transduction , Transforming Growth Factor beta1/metabolism
14.
Front Oncol ; 12: 899402, 2022.
Article in English | MEDLINE | ID: mdl-35615146

ABSTRACT

Estrogen receptor (ER)-positive breast cancer is the main subtype of breast cancer (BRCA) with high incidence and mortality. Andrographolide (AD), a major active component derived from the traditional Chinese medicine Andrographis paniculate, has substantial anti-cancer effect in various tumors. However, the antitumor efficacy and the underlying molecular mechanisms of AD on ER-positive breast cancer are poorly understood. In the present study, we demonstrated that andrographolide (AD) significantly inhibited the growth of ER-positive breast cancer cells. Mechanistically, AD suppressed estrogen receptor 1 (ESR1, encodes ER-α) transcription to inhibit tumor growth. Further studies revealed that AD induced ROS production to down-regulate FOXM1-ER-α axis. Conversely, inhibiting ROS production with N-acetylcysteine (NAC) elevated AD-decreased ER-α expression, which could be alleviated by FOXM1 knockdown. In addition, AD in combination with fulvestrant (FUL) synergistically down-regulated ER-α expression to inhibit ER-positive breast cancer both in vitro and in vivo. These findings collectively indicate that AD suppresses ESR1 transcription through ROS-FOXM1 axis to inhibit ER-positive breast cancer growth and suggest that AD might be a potential therapeutic agent and fulvestrant sensitizer for ER-positive breast cancer treatment.

15.
Phytomedicine ; 102: 154193, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35636177

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is an age-related neurodegenerative disorder without effective treatments. Mesencephalic astrocyte-derived neurotrophic factor (MANF) has been suggested to be capable of protecting against PD by inhibiting endoplasmic reticulum (ER) stress-mediated neuronal apoptosis. PURPOSE: This study was aimed to evaluate the antiparkinsonian effect of dendrobine and reveal its underlying mechanisms from the perspective of MANF-mediated ER stress suppression. METHODS: Behavioral assessments of PD mice as well as LDH/CCK-8 assay in SH-SY5Y cells and primary midbrain neurons were carried out to detect the antiparkinsonian effect of dendrobine. Immunofluorescence, western blot, flow cytometry and shRNA-mediated MANF knockdown were used to determine the apoptosis of dopaminergic neurons and the expressions of ER stress-related proteins for investigating the underlying mechanism of dendrobine. RESULTS: Dendrobine significantly ameliorated the motor performance of PD mice and attenuated the injuries of dopaminergic neurons. Dendrobine could also relieve neuronal apoptosis, up-regulate MANF expression and inhibit ER stress, which were largely abolished by shRNA-mediated MANF knockdown in PD model. CONCLUSION: Dendrobine might protect against PD by inhibiting dopaminergic neuron apoptosis, which was achieved by facilitating MANF-mediated ER stress suppression. Our study suggested that dendrobine could act as a MANF up-regulator to protect against PD, and provided a potential candidate for exploring etiological agents of PD.


Subject(s)
Alkaloids , Dopaminergic Neurons , Endoplasmic Reticulum Stress , Parkinson Disease , Alkaloids/pharmacology , Animals , Antiparkinson Agents/pharmacology , Apoptosis/drug effects , Dopamine/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/pathology , Endoplasmic Reticulum Stress/drug effects , Humans , Mice , Nerve Growth Factors/metabolism , Neuroblastoma/metabolism , Neuroblastoma/pathology , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Parkinson Disease/pathology , RNA, Small Interfering/pharmacology
16.
Inflammopharmacology ; 30(3): 695-704, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35290552

ABSTRACT

OBJECTIVE: This study aimed to evaluate the effect of adjunctive melatonin supplementation on clinical outcomes after non-surgical periodontal treatment. METHODS: PubMed, Embase, and Web of Science databases were systematically searched for randomised controlled trials (RCTs) of melatonin adjuvant therapy for periodontitis from inception until May 2021. The systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and registered on The International Prospective Register of Systematic Reviews (PROSPERO) (CRD42021250630). The risk of bias of included studies was assessed according to the Cochrane Handbook for Systematic Reviews of Interventions. The pooled effect estimates were calculated by a random-effects model, and results were expressed as weighted mean differences (WMD). RESULTS: Seven RCTs comprising 412 participants were included in the meta-analysis. The pooled results showed that adjuvant use of melatonin for non-surgical periodontal treatment significantly improved the probing depth (PD) [WMD = - 1.18, 95% CI (- 1.75, - 0.62) I2 = 85.7%], clinical attachment loss (CAL) [WMD = - 1.16, 95% CI (- 1.60, - 0.72) I2 = 76.7%] and gingival index (WMD = - 0.29, 95%CI [- 0.48, - 0.11], I2 = 63.6%) compared with non-surgical treatment alone. In addition, subgroup analysis showed that higher doses of melatonin (3-10 mg) significantly improved PD [WMD = - 1.32, 95%CI (- 2.31, - 0.15) I2 = 93%] and CAL [WMD = - 1.30, 95%CI (- 1.80, - 0.81) I2 = 73.7%] compared with lower doses of melatonin (< 3 mg). CONCLUSIONS: We found that adjunctive melatonin supplementation can significantly improve the periodontal status after non-surgical treatment, suggesting that melatonin may be a new adjuvant therapy for periodontitis when non-surgical periodontal treatment alone cannot achieve the desired improvement.


Subject(s)
Melatonin , Periodontitis , Humans , Melatonin/therapeutic use , Periodontitis/drug therapy , Treatment Outcome
17.
J Ethnopharmacol ; 292: 115216, 2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35331875

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Composed of dried Aconitum pendulum and Aconitum flavum roots, Tiebangchui, is an important Tibetan medicine and has been traditionally and widely used as a remedy for cold and pain for thousands of years because of its extraordinary pharmacological activities. The toxicity and efficacy of Tiebangchui as a typical toxic traditional Tibetan medicine, are interdependent, and thus to make sure its safe use in clinics is also noteworthy. AIM OF THE STUDY: This review aims to document and summarize critical and comprehensive information about traditional uses, phytochemistry, pharmacology, toxicology and processing methods of Tiebangchui. Perspectives for possible future investigations have been discussed. MATERIALS AND METHODS: Relevant information about Tiebangchui (A. pendulum and A. flavum) was collected from internationally recognized electronic scientific databases, such as Web of Science, PubMed, Science Direct, Springer Link, ACS, and CNKI. Then, classic Tibetan medical books, such as Four Medical Tantra, and Jing Zhu Materia Medica, and official drug standards were reviewed. RESULTS: A total of 95 chemical constituents have been isolated and identified from Tiebangchui, and most of them were diterpenoid alkaloids. These phytochemicals showed a wide range of pharmacological properties, such as anti-inflammation, anti-rheumatoid arthritis, analgesic, local anesthetic, anti-cancer and anti-bacterial activities. Hence, Tiebangchui is broadly used in hundreds of preparations to treat fever, arthritis, rheumatic arthralgia, traumatic injury, furuncle and swelling. Cardiotoxicity, neurotoxicity and gastrointestinal toxicity are the main toxic effects caused by the Aconitum alkaloids of Tiebangchui. Various processing methods, including steaming, decocting and sand-frying, and traditional Tibetan medicine processing methods, such as processing with Hezi decoction, Qingke wine and Zanba, are effective in attenuating toxicity while retaining efficacy. CONCLUSIONS: The present review provides primary information of Tiebangchui, particularly for its traditional uses, botanical characteristics, phytochemicals, outstanding bioactivities and processing methods. However, studies that explored the in vivo pharmacokinetics and mechanism of Tiebangchui, as well as its quality markers, qualitative and quantitative analysis are still insufficient. Processing methods that attenuate toxicities, evaluations of efficacy, in vivo processes and biological effects, the mechanisms of processed products should be further explored.


Subject(s)
Aconitum , Alkaloids , Drugs, Chinese Herbal , Aconitum/chemistry , Alkaloids/analysis , Drugs, Chinese Herbal/pharmacology , Ethnopharmacology/methods , Phytochemicals/therapeutic use , Phytochemicals/toxicity , Plant Extracts/pharmacology , Plant Roots/chemistry
18.
Phytomedicine ; 98: 153933, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35121394

ABSTRACT

BACKGROUND: Senescence leads to permanent cell-cycle arrest and is a potential target for cancer therapy. Andrographolide (AD) is a diterpene lactone isolated from Traditional Chinese Medicine (TCM) Andrographis paniculate, which has been used as an anti-inflammatory drug in clinical practice with the potential to target senescence in recalcitrant lung cancer. PURPOSE: To determine whether AD can induce senescence in human lung adenocarcinoma in vitro and in vivo and to elucidate the underlying mechanisms. METHODS: SA-ß-Gal staining was used to detect the expression of senescence-associated ß-galactosidase (SA-ß-Gal) in human lung adenocarcinoma cells A549 and NCI-H1795. DNA damage was examined by the detection of γH2AX foci. Cell cycle was analyzed by flow cytometry. Cancer cell proliferation was determined by ATPlite assay and clonogenic survival assay in vitro. Tumor growth was determined in a mouse model of A549. The expression level of proteins and mRNA was estimated by Western blotting and Quantitative RT-PCR, respectively. Small interfering RNA (siRNA) was used to knock down p21, p27 and p53 to explore the potential mechanism of AD-induced senescence in human lung adenocarcinoma cells. RESULTS: AD-induced A549 and NCI-H1795 cell senescence determined by increased cell size, flattened morphology, DNA damage, cell cycle arrest as well as the increased expression of ß-galactosidase. AD inhibited cell proliferation in lung cells in vitro and lung cells xenograft growth in nude mice. p21 and p27, the major cell cycle regulators and mediators of senescence, were upregulated at the protein level in AD-treated A549 lung adenocarcinoma in vitro and in vivo. Further studies demonstrated that AD induced cell senescence via p53/p21 and Skp2/p27. CONCLUSION: In the present study, we found that the primary anti-inflammatory drug AD could have a potential antitumor effect in lung cancer. We demonstrated that AD induced lung adenocarcinoma senescence in vitro and in vivo via p53/p21 and Skp2/p27 for the first time. AD is therefore a promising senescence-inducing therapeutic for recalcitrant human lung adenocarcinoma.

19.
Eur J Nutr ; 61(4): 1931-1942, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35067753

ABSTRACT

PURPOSE: The present study aimed to investigate fish oil plus vitamin D3 (FO + D) supplementation on biomarkers of non-alcoholic fatty liver disease (NAFLD). METHODS: In a 3-month randomized controlled trial, 111 subjects with NAFLD, aged 56.0 ± 15.9 y, were randomized into FO + D group (n = 37), fish oil group (FO, n = 37) or corn oil group (CO, n = 37). The subjects consumed the following capsules (3 g/day), which provided 2.34 g/day of eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) + 1680 IU vitamin D3 (FO + D group), or 2.34 g/day of EPA + DHA (FO group), or 1.70 g/d linoleic acid (CO group). RESULTS: Using multivariable-adjusted general linear model, there were significant net reductions in serum alanine aminotransferase (ALT), and triacylglycerol (TAG) and TNF-α levels in the FO + D and FO groups, compared with the control group (P < 0.05). The supplemental FO + D also showed significant reductions in insulin (- 1.58 ± 2.00 mU/L vs. - 0.63 ± 1.55 mU/L, P = 0.050) and IL-1ß (- 6.92 ± 7.29 ng/L vs. 1.06 ± 5.83 ng/L, P < 0.001) in comparison with control group. Although there were no significant differences between FO + D and FO groups regarding biochemical parameters, supplemental FO + D showed decreases in ALT (from 26.2 ± 13.5 U/L to 21.4 ± 9.6 U/L, P = 0.007), aspartate aminotransferase (AST, from 22.5 ± 7.0 U/L to 20.2 ± 4.0 U/L, P = 0.029), HOMA-IR (from 3.69 ± 1.22 to 3.38 ± 1.10, P = 0.047), and TNF-α (from 0.43 ± 0.38 ng/L to 0.25 ± 0.42 ng/L, P < 0.001) levels following the intervention. CONCLUSION: The present study demonstrated that groups supplemented with FO + D and FO had similar beneficial effects on biomarkers of hepatocellular damage and plasma TAG levels in subjects with NAFLD, while in the FO + D group, there were some suggestive additional benefits compared with FO group on insulin levels and inflammation. TRIAL REGISTRATION: ChiCTR1900024866.


Subject(s)
Cholecalciferol , Fish Oils , Non-alcoholic Fatty Liver Disease , Biomarkers , Cholecalciferol/administration & dosage , Dietary Supplements , Docosahexaenoic Acids/administration & dosage , Eicosapentaenoic Acid/administration & dosage , Fish Oils/administration & dosage , Humans , Insulin , Middle Aged , Non-alcoholic Fatty Liver Disease/diet therapy , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Triglycerides/metabolism , Tumor Necrosis Factor-alpha/metabolism
20.
Ultrason Sonochem ; 83: 105923, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35093739

ABSTRACT

Rice selenium-containing peptide TSeMMM (T) with immunomodulatory functions was isolated from selenium-enriched rice protein hydrolysates. However, its biological activity is difficult to be protected in complex digestive environments. In this study, T was encapsulated within zein and gum arabian (GA) through ultrasound treatment to improve its bioactivity and bioavailability. The zein@T/GA nanoparticles were formed using ultrasonic treatment at 360 W for 5 min with a 59.9% T-encapsulation efficiency. In vitro digestion showed that the cumulative release rate of zein@T/GA nanoparticles reached a maximum of 80.69% after 6 h. In addition, short-term animal studies revealed that the nanoparticles had an effect on the levels of tissue glutathione and improved peptides' oral bioavailability. Conclusively, these findings suggest that the ultrasonicated polysaccharide/protein system is suitable for encapsulating active small molecular peptides. Furthermore, it provides a novel foundation for studying the bioavailability of active substances in functional foods.


Subject(s)
Nanoparticles , Selenium , Zein , Animals , Nanoparticles/chemistry , Particle Size , Peptides , Ultrasonics , Zein/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL