Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Zhongguo Zhong Yao Za Zhi ; 47(21): 5855-5862, 2022 Nov.
Article in Chinese | MEDLINE | ID: mdl-36472004

ABSTRACT

To comprehensively evaluate the quality of commercial Ginseng Radix et Rhizoma Rubra, 43 batches of commercial Ginseng Radix et Rhizoma Rubra were collected to determine the content of nine ginsenosides Rg_1, Re, Rb_1, Rk_3, Rh_4, 20(S)-Rg_3, 20(R)-Rg_3, Rk_1, and Rg_5 by high performance liquid chromatography(HPLC). The quality of the commercial Ginseng Radix et Rhizoma Rubra was evaluated by correlation analysis, principal component analysis, factor analysis, analysis of variance(ANOVA), and cluster heatmap analysis. The content determination indicated that the content of common ginsenosides in commercial Ginseng Radix et Rhizoma Rubra were higher while that of rare ginsenosides were lower. Multivariate statistical analysis revealed that ginsenosides Rg_1 and Rb_1 were significantly positively correlated with rare ginsenosides, and Rg_1, Rb_1 and rare ginsenosides played an important role in evaluating the quality of commercial Ginseng Radix et Rhizoma Rubra. In combination with the processing principle and current quality situation of Ginseng Radix et Rhizoma Rubra, it is recommended to improve the content limit of Rb_1 in the existing quality standards.


Subject(s)
Drugs, Chinese Herbal , Ginsenosides , Panax , Ginsenosides/analysis , Rhizome/chemistry , Plant Roots/chemistry , Chromatography, High Pressure Liquid
2.
Zhongguo Zhong Yao Za Zhi ; 47(13): 3619-3628, 2022 Jul.
Article in Chinese | MEDLINE | ID: mdl-35850816

ABSTRACT

Gegen Qinlian Decoction(GQD) is commonly used for the clinical treatment of ulcerative colitis(UC) and other diseases, but its compatibility mechanism has not been elucidated systematically. In this study, the compatibility mechanism of GQD against UC was revealed based on the blood components in the mouse model of UC by network pharmacology. The targets of blood components of GQD were collected to construct a protein-protein interaction(PPI) network. The key targets were screened out according to the topological parameters of the network, and 16 core components were identified, such as puerarin, chrysin, berberine, and liquiritigenin, based on the key targets in the blood components. Functional enrichment analysis was performed on the key targets, and the regulatory network of the prescription was constructed, which elucidated the compatibility mechanism of the Chinese herbal drugs in the prescription at both target and pathway levels. The results showed that all the Chinese herbal drugs in GQD had heat-clearing and toxin-removing effects, and the four Chinese herbal drugs synergistically exerted their effects by co-regulating protooncogenes, such as FOS and JUN, and characteristically regulating signal transducer and activator of transcription 3(STAT3) and interleukin-6(IL-6). The pathway analysis revealed that GQD exerted heat-clearing and toxin-removing effects mainly by regulating the inflammatory response-related signaling pathways, such as Toll-like receptor, tumor necrosis factor(TNF), and mitogen-activated protein kinase(MAPK). Furthermore, the study revealed the synergistic effects of Chinese herbal drugs in GQD based on the TNF signaling pathway. The results showed that the sovereign drug Puerariae Lobatae Radix played a primary role in the regulation of targets in the TNF signaling pathway, the minister drugs Scutellariae Radix and Coptidis Rhizoma showed the synergistic effects with Puerariae Lobatae Radix, and the assistant and guiding drug Glycyrrhizae Radix et Rhizoma supported Puerariae Lobatae Radix in the key target NF-κB and the process of cell adhesion. The drugs in GQD showed good characteristics of compatibility in the TNF signaling pathway. This study is expected to provide the basis for the further exploration of the compatibility mechanism of GQD.


Subject(s)
Colitis, Ulcerative , Drugs, Chinese Herbal , Pueraria , Animals , Colitis, Ulcerative/drug therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Mice , Network Pharmacology
3.
Zhongguo Zhong Yao Za Zhi ; 47(4): 1073-1084, 2022 Feb.
Article in Chinese | MEDLINE | ID: mdl-35285208

ABSTRACT

This study established a mouse model of ulcerative colitis and explored the serum transitional components of Gegen Qinlian Decoction by UHPLC-Q-Orbitrap-MS. Based on the exact relative molecular weight and MS/MS spectrum, 55 prototype components and 59 metabolites were identified from the model group, while 18 prototype components and 35 metabolites from the control group. The prototype components in serum were mainly flavonoids and the characteristic components of the model group were alkaloids. Glucuronidation, sulfonation, and glycosylation have been confirmed to be the main metabolic types in vivo. The results of comparative analysis of differences indicated that puerarin, baicalin, wogonoside, wogonin, chrysin, oroxylin A, berberine, berberrubine, and palmatine were the characteristic components in model state, which at the same time, were confirmed by pharmacological studies to be the serum pharmacodynamic material basis of Gegen Qinlian Decoction in the treatment of ulcerative colitis. This study has provided reference for explaining the metabolic transformation pattern and mechanism of action of Gegen Qinlian Decoction in vivo.


Subject(s)
Alkaloids , Colitis, Ulcerative , Animals , Chromatography, High Pressure Liquid/methods , Colitis, Ulcerative/drug therapy , Drugs, Chinese Herbal , Mice , Tandem Mass Spectrometry/methods
4.
Zhongguo Zhong Yao Za Zhi ; 46(15): 3949-3959, 2021 Aug.
Article in Chinese | MEDLINE | ID: mdl-34472272

ABSTRACT

Qishen Yiqi Dripping Pills(QSYQ) are used clinically to treat various myocardial ischemic diseases, such as angina pectoris, myocardial infarction, and heart failure; however, the molecular mechanism of QSYQ remains unclear, and the scientific connotation of traditional Chinese medicine(TCM) compatibility has not been systematically explained. The present study attempted to screen the critical pathway of QSYQ in the treatment of myocardial ischemia by network pharmacology and verify the therapeutic efficacy with the oxygen-glucose deprivation(OGD) model, in order to reveal the molecular mechanism of QSYQ based on the critical pathway. The key targets of QSYQ were determined by active ingredient identification and target prediction, and underwent pathway enrichment analysis and functional annotation with David database to reveal the biological role and the critical pathway of QSYQ. Cell counting Kit-8(CCK-8), lactate dehydrogenase(LDH), and Western blot tests were launched on high-content active ingredients with OGD cell model to reveal the molecular mechanism of QSYQ based on the critical pathway. The results of network pharmacology indicated that QSYQ, containing 18 active ingredients and 82 key targets, could protect cardiomyocytes by regulating biological functions, such as nitric oxide biosynthesis, apoptosis, inflammation, and angiogenesis, through TNF signaling pathway, HIF-1 signaling pathway, PI3 K-Akt signaling pathway, etc. HIF-1 signaling pathway was the critical pathway. As revealed by CCK-8 and LDH tests, astragaloside Ⅳ, salvianic acid A, and ginsenoside Rg_1 in QSYQ could enhance cell viability and reduce LDH in the cell supernatant in a concentration-dependent manner(P<0.05). As demonstrated by the Western blot test, astragaloside Ⅳ significantly down-regulated the protein expression of serine/threonine-protein kinase(Akt1) and hypoxia-inducible factor 1α(HIF-1α) in the HIF-1 signaling pathway, and up-regulated the protein expression of vascular endothelial growth factor A(VEGFA). Salvianic acid A significantly down-regulated the protein expression of upstream phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha(PIK3 CA) and downstream HIF-1α of Akt1. Ginsenoside Rg_1 significantly down-regulated the expression of HIF-1α protein and up-regulated the expression of VEGFA. The therapeutic efficacy of QSYQ on myocardial ischemia was achieved by multiple targets and multiple pathways, with the HIF-1 signaling pathway serving as the critical one. The active ingredients of QSYQ could protect cardiomyocytes synergistically by regulating the targets in the HIF-1 signaling pathway to inhibit its expression.


Subject(s)
Drugs, Chinese Herbal , Myocardial Ischemia , Drugs, Chinese Herbal/pharmacology , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Myocardial Ischemia/drug therapy , Myocardial Ischemia/genetics , Signal Transduction , Vascular Endothelial Growth Factor A
5.
Phytother Res ; 35(5): 2568-2578, 2021 May.
Article in English | MEDLINE | ID: mdl-33350549

ABSTRACT

In China, the fruits of Physalis alkekengi L. var. franchetii, which are conventionally utilized as edible berry, have attracted wide attention due to its significant biological activities. In the present study, phytochemical studies on the fruits of Physalis plants afforded six compounds, including two new withanolides (1-2) and four known agnologues (3-6). The inhibitory effects of these compounds on the formation of nitric oxide (NO) stimulated by lipopolysaccharide (LPS) in RAW264.7 macrophages were evaluated. Physapubescin M (1), with IC50 value of 1.58 µM, was selected for further study. The protein expression of COX-2 and iNOS, and LPS-induced production of cytokines (IL-6, IL-1ß and TNF-α) were reduced by physapubescin M (1) in a dose-dependent way. In addition, transcriptomic analyses were conducted to profile gene expression alterations in LPS-induced RAW264.7 cells upon treatment of physapubescin M (1) and the potential antiinflammatory mechanism of withnolides was mentioned. These results provide broad view to the underlying antiinflammatory mechanism of withnolides, and give a theoretical basis for the utilization of the fruits of P. alkekengi L. var. franchetii.

6.
J Ethnopharmacol ; 268: 113673, 2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33301921

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Jatropha curcas L. (Euphorbiaceae), as a drought resistant shrub mainly cultivated in tropical and subtropical areas worldwide, is widely used as traditional medicine to cure arthritis, dysentery, abscess and pneumonia in Asian, African and South American folklores. The methanolic extracts of the roots have been revealed the anti-inflammatory activity in vivo and vitro. AIM OF STUDY: This research aimed to provide promising anti-inflammatory candidates from the roots of J. curcas. In addition, RNA-Seq was conducted to give targeted genes involved in the anti-inflammatory action. MATERIALS AND METHODS: The diterpenoids were isolated from the CH2Cl2 fraction of the methanolic extract from the roots of J. curcas by column chromatography (CC): silica gel, Sephadex LH-20, ODS, semi-preparative reversed-phase high-performance liquid chromatography (HPLC). The structures were identified based on HR-ESI-MS and 1D, 2D-NMR spectroscopic analysis. Their anti-inflammatory effects were tested on lipopolysaccharide (LPS, 500 ng/mL)-stimulated murine RAW264.7 macrophages. Furthermore, we conducted transcriptome-wide RNA sequencing to profile gene expression alterations in LPS-induced RAW264.7 cells upon treatment with jatrocurcasenone I (4) and analyzed the underlying genes targeted by this compound. RESULTS: Six diterpenoids were obtained from J. curcas, and four of them were identified to be new lathyrane diterpenoids: jatrocurcasenones F-I (1-4). Compounds 3 and 4 exhibited potent inhibitory activities against LPS-induced nitric oxide (NO) production in RAW264.7 cells with IC50 values of 11.28 µM and 7.71 µM, respectively. Western blotting analysis showed that the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were suppressed with the supplementation of 3 and 4. The results of RNA-seq showed that 4 (20 µM) exhibited regulation on the 587 differentially expressed genes (DEGs) induced by LPS (500 ng/mL). Transcriptome-wide RNA sequencing indicated that the protective activity of 4 supplementation was most likely driven by modulating expression levels of IL-1α, IL-1ß, IL-1f6, IL-6, IL-1rn, IL-27, Ccl2, Ccl5, Ccl7, Ccl9, Ccl22, Cxcl10, Tnfsf12, Tnfsf15, Lta, Trim25, Bcl2a1a, Dusp1, Dusp2, Ptgs2, Edn1 and Nr4a1. CONCLUSIONS: This study offered four new lathyrane diterpenoids, of them, jatrocurcasenone I (4) showed significant anti-inflammatory activity. RNA-Seq suggested that jatrocurcasenone I (4) could be a candidate drug for the prevention inflammation-mediated diseases by modulating 24 candidate DEGs.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Diterpenes/pharmacology , Inflammation Mediators/antagonists & inhibitors , Jatropha , Plant Roots , Animals , Anti-Inflammatory Agents/isolation & purification , Diterpenes/isolation & purification , Dose-Response Relationship, Drug , Inflammation Mediators/metabolism , Mice , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , RAW 264.7 Cells
7.
Zhongguo Zhong Yao Za Zhi ; 45(8): 1772-1778, 2020 Apr.
Article in Chinese | MEDLINE | ID: mdl-32489060

ABSTRACT

Wogonin is a main effective component of Scutellaria baicalensis, with a significant anti-cancer activity. Recently, extensive studies focused on anti-cancer pharmacological effects of wogonin, but there were still a few studies on its molecular mechanism. Therefore, the molecular targets of its anti-cancer activity were still unclear. In this study, network pharmacology was applied to investigate the potential targets and molecular pathway of wogonin in inhibiting the growth of colorectal cancer. It indicated that Wnt/ß-catenin was a key pathway of wogonin on colorectal cancer. Then, pharmacology and molecular mechanism studies were performed according to network pharmacological results. Pharmacological results revealed that wogonin inhibited significantly the proliferation of SW480(P<0.001), with a concentration-dependent regularity in the range of 12.5-50 µmol·L~(-1). Additionally, wogonin could induce G_1 phase blocking of SW480 cells. Western blot was used to investigate the effect of wogonin on four characteristic proteins of Wnt/ß-catenin pathway. CTNNB1(ß-catenin), BIRC5(survivin) and GSK3 B were down-regulated significantly, while the expression level of BAX was up-regulated(P<0.05). In conclusion, wogonin could inhibit the proliferation of SW480 cells through Wnt/ß-catenin pathway. The feature protein CTNNB1(ß-catenin), BIRC5(survivin), GSK3 B and BAX were identified as the potential targets. This study illuminated the anti-cancer molecular mechanism and drug targets of wogonin, which provided a theoretical basis for anti-colon cancer drug discovery and clinical application.


Subject(s)
Colorectal Neoplasms , Glycogen Synthase Kinase 3 , Cell Line, Tumor , Cell Proliferation , Flavanones , Humans , Wnt Signaling Pathway , beta Catenin
8.
Zhongguo Zhong Yao Za Zhi ; 44(17): 3637-3644, 2019 Sep.
Article in Chinese | MEDLINE | ID: mdl-31602935

ABSTRACT

The biopharmaceutics classification system( BCS) is a scientific framework or method for classifying drugs based on drug solubility and permeability,which can be used to provide drug bioavailability-absorption correlation analysis. Based on the characteristics of multi-component and multi-target of traditional Chinese medicine( TCM) as well as the concept,method and technology of BCS,the research group proposed biopharmaceutics classification system of Chinese materia medica( CMMBCS) and carried out research and data accumulation of classical prescriptions. Based on the previous research results,further development ideas under the CMMBCS concept and framework were further proposed in this study. In the course of research,the influence of the intermediate links of the complex interactions of the multi-component environment was omitted,and the component absorption studies on the main clinical effects of prescription ingredients were directly concerned,or the components and data were reversely extracted from the aspects of metabolism,pharmacodynamic pathways and absorption principles. Studies were conducted from two aspects( single component and compound prescription) to comprehensively evaluate the absorption properties of TCM compound. In the research path,the different ways in which Chinese medicine could exert its efficacy were fully considered,and CMMBCS classification and establishment rules were clarified mainly by focusing on the absorption pathway into the blood. Specifically,the network pharmacology and molecular docking technology were used to screen the compound index components of TCM; the absorption rules were studied by the physiologically based pharmacokinetic models and the absorption parameters of CMMBCS were calculated by reverse reasoning. Then the CMMBCS classification of TCM prescription was corrected by studying the efficacy or absorption pathway. In this paper,the theoretical framework and research methodology of CMMBCS were systematically improved based on the establishment of CMMBCS basic theory,the supplementary of drug-oriented research ideas and the application of modern mature Chinese medicine methodology.


Subject(s)
Biopharmaceutics/classification , Drugs, Chinese Herbal/classification , Materia Medica/classification , Molecular Docking Simulation
9.
Zhongguo Zhong Yao Za Zhi ; 44(5): 948-953, 2019 Mar.
Article in Chinese | MEDLINE | ID: mdl-30989854

ABSTRACT

Longshengzhi capsule consisting of 12 herbs is widely used in clinically treating cerebral ischemia during recovery period.In this study,in order to investigate the consistency of different batches of Longshengzhi capsules,a high performance liquid chromatography coupled to triple quadrupole mass spectrometry method(HPLC-QQQ/MS) was developed for the determination of 19 representative components in Longshengzhi Capsules within 9 min. Methodology validation indicated this method was simple,rapid,accurate,highly sensitive and reproducible,and it could be used for the content determination of components in Longshengzhi Capsules. The consistency analysis results showed that paeoniflorin and calycosin-7-glucoside in Longshengzhi Capsules had the highest content; RSD value of total content of 19 compounds was 5. 2% and the RSD value of main compounds such as astragaloside and calycosin-7-glucoside was all less than 15%,reflecting good consistency among different batches. This study has provided a scientific method and basis for the quality control and consistency evaluation of Longshengzhi Capsules.


Subject(s)
Drugs, Chinese Herbal/analysis , Drugs, Chinese Herbal/standards , Capsules , Chromatography, High Pressure Liquid , Mass Spectrometry , Reproducibility of Results
10.
Front Pharmacol ; 9: 956, 2018.
Article in English | MEDLINE | ID: mdl-30233366

ABSTRACT

Chemotherapy-induced peripheral neuropathy (CIPN) is a serious dose-limiting toxicity of many anti-neoplastic agents, especially paclitaxel, and oxaliplatin. Up to 62% of patients receiving paclitaxel regimens turn out to develop CIPN. Unfortunately, there are so few agents proved effective for prevention or management of CIPN. The reason for the current situation is that the mechanisms of CIPN are still not explicit. Traditional Chinese Medicine (TCM) has unique advantages for dealing with complex diseases. Wen-Luo-Tong (WLT) is a TCM ointment for topical application. It has been applied for prevention and management of CIPN clinically for more than 10 years. Previous animal experiments and clinical studies had manifested the availability of WLT. However, due to the unclear mechanisms of WLT, further transformation has been restricted. To investigate the therapeutic mechanisms of WLT, a metabolomic method on the basis of UPLC- MS was developed in this study. Multivariate analysis techniques, such as principal component analysis (PCA) and partial least squares discriminate analysis (PLS-DA), were applied to observe the disturbance in the metabolic state of the paclitaxel-induced peripheral neuropathy (PIPN) rat model, as well as the recovering tendency of WLT treatment. A total of 19 significant variations associated with PIPN were identified as biomarkers. Results of pathway analysis indicated that the metabolic disturbance of pathways of linoleic acid (LA) metabolism and glycerophospholipid metabolism. WLT attenuated mechanical allodynia and rebalanced the metabolic disturbances of PIPN by primarily regulating LA and glycerophospholipid metabolism pathway. Further molecular docking analysis showed some ingredients of WLT, such as hydroxysafflor yellow A (HSYA), icariin, epimedin B and 4-dihydroxybenzoic acid (DHBA), had high affinity to plenty of proteins within these two pathways.

11.
Zhongguo Zhong Yao Za Zhi ; 43(13): 2796-2805, 2018 Jul.
Article in Chinese | MEDLINE | ID: mdl-30111034

ABSTRACT

To explore the drug-induced constituents in vivo of Polygonum multiflorum extract (PM). This study was the first to study the drug-induced constituents in target organ liver. Agilent MassHunter qualitative analysis software and Metabolite ID software were applied for the analysis of retention time, exact relative molecular mass, primary and secondary mass spectrum information based on ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and targeted-MS/MS. By comparison with literature and standards, a total of 5 prototypes and 6 metabolites were identified or tentatively elucidated from the liver samples. In addition, the drug-induced constituents in plasma and PM were also analyzed in this study and 8 prototypes and 19 metabolites were detected from the plasma samples, while 30 compounds were detected from the extract of PM. Emodin oxidative acetylation metabolites, hydroxyl methylation metabolites, carboxylation glucuronidation metabolites and ketone glucuronidation metabolites in this study were first reported. Through the comparative analysis between the in vivo and in vitro constituents of PM, the study preliminarily revealed the drug-induced constituents (prototypes and metabolites) in liver and clarified the transfer process and transmutation rules of constituents in PM, blood and liver, which would further deepen our understanding on constituents of PM in vivo.


Subject(s)
Drugs, Chinese Herbal , Fallopia multiflora , Animals , Chromatography, High Pressure Liquid , Liver , Rats, Sprague-Dawley , Tandem Mass Spectrometry
12.
World J Gastroenterol ; 18(47): 7040-7, 2012 Dec 21.
Article in English | MEDLINE | ID: mdl-23323006

ABSTRACT

AIM: To study the effect of salvianolate on tight junctions (TJs) and zonula occludens protein 1 (ZO-1) in small intestinal mucosa of cirrhotic rats. METHODS: Cirrhosis was induced using carbon tetrachloride. Rats were randomly divided into the untreated group, low-dose salvianolate (12 mg/kg) treatment group, medium-dose salvianolate (24 mg/kg) treatment group, and high-dose salvianolate (48 mg/kg) treatment group, and were treated for 2 wk. Another 10 healthy rats served as the normal control group. Histological changes in liver tissue samples were observed under a light microscope. We evaluated morphologic indices of ileal mucosa including intestinal villi width and thickness of mucosa and intestinal wall using a pathological image analysis system. Ultrastructural changes in small intestinal mucosa were investigated in the five groups using transmission electron microscopy. The changes in ZO-1 expression, a tight junction protein, were analyzed by immunocytochemistry. The staining index was calculated as the product of the staining intensity score and the proportion of positive cells. RESULTS: In the untreated group, hepatocytes showed a disordered arrangement, fatty degeneration was extensive, swelling was obvious, and disorganized lobules were divided by collagen fibers in hepatic tissue, which were partly improved in the salvianolate treated groups. In the untreated group, abundant lymphocytes infiltrated the fibrous tissue with proliferation of bile ducts, and collagen fibers gradually decreased and damaged hepatic lobules were partly repaired following salvianolate treatment. Compared with the untreated group, no differences in intestinal villi width between the five groups were observed. The villi height as well as mucosa and intestinal wall thickness gradually thickened with salvianolate treatment and were significantly shorter in the untreated group compared with those in the salvianolate treatment groups and normal group (P < 0.01). The number of microvilli decreased and showed irregular lengths and arrangements in the untreated group. The intercellular space between epithelial cells was wider. The TJs were discontinuous, which indicated disruption in TJ morphology in the untreated group. In the treated groups, the microvilli in the intestinal epithelium were regular and the TJs were gradually integrated and distinct. The expression of ZO-1 decreased in the small intestine of the untreated cirrhotic rats. The high expression rate of ZO-1 in ileal mucosa in the untreated group was significantly lower than that in the medium-dose salvianolate group (21.43% vs 64.29%, χ(2) = 5.25, P < 0.05), high-dose salvianolate group (21.43% vs 76.92%, χ(2) = 8.315, P < 0.01) and normal group (21.43% vs 90%, χ(2) = 10.98, P < 0.01). CONCLUSION: Salvianolate improves liver histopathological changes, repairs intestinal mucosa and TJ structure, and enhances ZO-1 expression in the small intestinal mucosa in cirrhotic rats.


Subject(s)
Chemical and Drug Induced Liver Injury/metabolism , Intestinal Mucosa/drug effects , Liver/pathology , Plant Extracts/pharmacology , Tight Junctions/drug effects , Zonula Occludens-1 Protein/metabolism , Animals , Carbon Tetrachloride , Hepatocytes/cytology , Ileum/pathology , Immunohistochemistry , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Liver/drug effects , Liver Cirrhosis/chemically induced , Liver Cirrhosis/metabolism , Male , Microscopy, Electron, Transmission , Rats , Rats, Sprague-Dawley , Tight Junctions/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL