Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Nanobiotechnology ; 21(1): 489, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38111035

ABSTRACT

Orthotopic advanced hepatic tumor resection without precise location and preoperative downstaging may cause clinical postoperative recurrence and metastasis. Early accurate monitoring and tumor size reduction based on the multifunctional diagnostic-therapeutic integration platform could improve real-time imaging-guided resection efficacy. Here, a Near-Infrared II/Photoacoustic Imaging/Magnetic Resonance Imaging (NIR-II/PAI/MRI) organic nanoplatform IRFEP-FA-DOTA-Gd (IFDG) is developed for integrated diagnosis and treatment of orthotopic hepatic tumor. The IFDG is designed rationally based on the core "S-D-A-D-S" NIR-II probe IRFEP modified with folic acid (FA) for active tumor targeting and Gd-DOTA agent for MR imaging. The IFDG exhibits several advantages, including efficient tumor tissue accumulation, good tumor margin imaging effect, and excellent photothermal conversion effect. Therefore, the IFDG could realize accurate long-term monitoring and photothermal therapy non-invasively of the hepatic tumor to reduce its size. Next, the complete resection of the hepatic tumor in situ lesions could be realized by the intraoperative real-time NIR-II imaging guidance. Notably, the preoperative downstaging strategy is confirmed to lower the postoperative recurrence rate of the liver cancer patients under middle and advanced stage effectively with fewer side effects. Overall, the designed nanoplatform demonstrates great potential as a diagnostic-therapeutic integration platform for precise imaging-guided surgical navigation of orthotopic hepatic tumors with a low recurrence rate after surgery, providing a paradigm for diagnosing and treating the advanced tumors in the future clinical translation application.


Subject(s)
Liver Neoplasms , Nanoparticles , Surgery, Computer-Assisted , Humans , Phototherapy , Magnetic Resonance Imaging/methods , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/surgery , Cell Line, Tumor
2.
Environ Sci Pollut Res Int ; 30(11): 28407-28421, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36680723

ABSTRACT

Two interrelated problems exist: the non-renewability of phosphate rock as a resource and the excess phosphate in the water system lead to eutrophication. Removal and recovery of phosphorus (P) from waste streams at wastewater treatment plants (WWTPs) is one of the promising solutions. This paper reviews strategies for P recovery from waste streams in WWTPs are reviewed, and the main P recovery processes were broken down into three parts: enrichment, extraction, and crystallization. On this basis, the present P recovery technology was summarized and compared. The choice of P recovery technology depends on the process of sewage treatment and sludge treatment. Most P recovery processes can meet the financial requirements since the recent surge in phosphate rock prices. The safety requirements of P recovery products add a high cost to toxic substance removal, so it is necessary to control the discharge of toxic substances such as heavy metals and persistent organic pollutants from the source.


Subject(s)
Phosphorus , Water Purification , Phosphorus/chemistry , Waste Disposal, Fluid/methods , Crystallization , Sewage/chemistry , Phosphates , Water Purification/methods
3.
Sci Total Environ ; 839: 156275, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35644401

ABSTRACT

Recovery of phosphorus (P) from wastewater can help establish a new P cycle. However, there are many P forms in wastewater, not always in reactive forms, which are the most suitable for direct recovery. The enhanced biological phosphorus removal process with sidestream phosphorus recovery (EBPR-SPR) is an effective way to remove and recover P resources in wastewater, but there is a lack of research on the transformation and fate of non-reactive phosphorus (NRP) in it. This study selected four model NRP to investigate their transformation and fate in an EBPR-SPR process. The transformation of NRP in pure water and activated sludge under anaerobic and aerobic conditions were compared. The effects of Ca/P ratio and pH on NRP recovery were studied, and the recovery products of NRP were characterized. It was found that NRP containing phosphoanhydride and phosphoester bonds were more easily hydrolyzed to reactive P (RP) than that containing PC bonds. NRP will be adsorbed and accumulated by activated sludge, and activated sludge will accelerate the conversion of NRP to RP. Tripolyphosphate can form complex precipitation with Ca2+. When multiform P co-existed, Ca2+ preferably complexed with polyphosphate, which harmed RP recovery. The conversion of NRP should be strengthened to recover more P in wastewater. The effect of NRP should be considered when recovering P from wastewater.


Subject(s)
Phosphorus , Sewage , Bioreactors , Phosphorus/chemistry , Sewage/chemistry , Wastewater , Water
4.
Sci Total Environ ; 822: 153618, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35124042

ABSTRACT

Recovery of phosphorus from sewage can help establish a new phosphorus cycle and hydroxyapatite (HAP) crystallization is a promising way. HAP crystallization is an amorphous calcium phosphate (ACP) mediated process, and its induction time reflects the rate of HAP nucleation, and seriously affects the efficiency of phosphorus recovery. In this study, the effects of different types of dissolved organic matter (DOM) on the induction time and phosphorus recovery performance of ACP-mediated HAP phosphorus recovery were studied, and the mechanism was analyzed by X-Ray Diffraction, Fourier transform infrared spectroscopy, and scanning electron micrograph with energy dispersive spectrometry. The results show that DOM greatly prolongs the induction time of ACP-mediated HAP crystallization and leads to an increase in the yield of microcrystals, thus leading to a decrease in phosphorus recovery efficiency. DOM inhibits ACP-mediated HAP crystallization by complexing lattice ions and occupying active growth sites on the crystal surface. Pre-removal of DOM can not only improve the speed and efficiency of phosphorus recovery by the HAP crystallization process but also improve product quality.


Subject(s)
Durapatite , Phosphorus , Crystallization , Dissolved Organic Matter , Durapatite/chemistry , Phosphorus/chemistry , Sewage , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL