Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Int J Biol Macromol ; 267(Pt 2): 131286, 2024 May.
Article in English | MEDLINE | ID: mdl-38583851

ABSTRACT

Polymer-based nanomotors are attracting increasing interest in the biomedical field due to their microscopic size and kinematic properties which support overcoming biological barriers, completing cellular uptake and targeted blasting in limited spaces. However, their applications are limited by the complex viscous physiological environment and lack of sufficient biocompatibility. This manuscript firstly reports a natural melanin nano-missile of MNP@HA-EDA@Urease@AIE PS (MHUA) based on photothermally accelerated urease-driven to achieve chemodrug-free phototherapy. Compared to conventional nano-missiles that only provide driving force, this photothermally accelerated urease-driven nanomotor is independent of chemodrug to maximise biocompatibility, and achieve ideal therapeutic effect through targeted PTT/PDT. In particular, the thermal effect can not only boost the catalytic activity of urease but also achieve ideally anti-tumor effect. In addition, guided by and AIE PS, the nanomotor can generate 1O2 to achieve PDT and be traced in real time serving as an effective fluorescent bio-radar for intracellular self-reporting during cancer treatment. Finally, the targeting ability of MUHA is provided by hyaluronan. Taken together, this MHUA platform provides a simple and effective strategy for target/fluorescence radar detective-guided PTT/PDT combination, and achieves good therapeutic results without chemodrug under thermal accelerated strategy, providing a new idea for the construction of chemodrug-free nanomotor-therapy system.


Subject(s)
Hyaluronic Acid , Melanins , Urease , Humans , Cell Line, Tumor , Decapodiformes , Hyaluronic Acid/chemistry , Melanins/chemistry , Nanoparticles/chemistry , Phototherapy/methods , Urease/chemistry , Urease/metabolism , Animals
2.
Adv Healthc Mater ; 13(17): e2304086, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38520218

ABSTRACT

The problem of antibiotic resistance seriously affects the treatment of bacterial infections, so there is an urgent need to develop novel antibiotic-independent antimicrobial strategies. Herein, a urease-driven bowl-like mesoporous polydopamine nanorobot (MPDA@ICG@Ur@Man) based on single-wavelength near-infrared (NIR) remote photothermal acceleration to achieve antibiotic-free phototherapy(photothermal therapy, PTT, plus photodynamic therapy, PDT) is first reported. The smart nanorobots can perform active movement by decomposing urea to produce carbon dioxide and ammonia. Particularly, the elevated local temperature during PTT can increase urease activity to enhance the autonomous movement and thus increase the contact between the antimicrobial substance and bacteria. Compared with a nanomotor propelled by urea only, the diffusion coefficient (De) of photothermal-accelerated nanorobots is increased from 1.10 to 1.26 µm2 s-1. More importantly, urease-driven bowl-like nanorobots with photothermal enhancement can specifically identify Escherichia coli (E. coli) and achieve simultaneous PTT/PDT at a single wavelength with 99% antibactericidal activity in vitro. In a word, the urease-driven bowl-like nanorobots guided by photothermal-accelerated strategy could provide a novel perspective for increasing PTT/PDT antibacterial therapeutic efficacy and be promising for various antibiotic-free sterilization applications.


Subject(s)
Escherichia coli , Indoles , Polymers , Urease , Urease/metabolism , Urease/chemistry , Indoles/chemistry , Indoles/pharmacology , Polymers/chemistry , Escherichia coli/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Photochemotherapy/methods , Photothermal Therapy/methods , Humans
3.
Int J Biol Macromol ; 240: 124486, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37076068

ABSTRACT

Nanomotors, as a new type of micro-device, show good performance in terms of rapid transportation and deep penetration through their autonomous motion. However, their ability to efficiently break physiological barriers still remains a great challenge. Herein, we first developed a thermal-accelerated urease driven human serum albumin (HSA) nanomotor based on photothermal intervention (PTI) to achieve chemotherapy drugfree-phototherapy. The HANM@FI (HSA-AuNR@FA@Ur@ICG) is composed of a main body of biocompatible HSA, modified by gold nanorods (AuNR) and loaded with functional molecules of folic acid (FA) and indocyanine green (ICG). It promotes its own motion by breaking down urea to produce carbon dioxide and ammonia. In particular, the nanomotor is conveniently operated via near-infrared combined photothermal therapy (PTT)/ photodynamic therapy (PDT) to achieve an accelerated De value from 0.73 µm2s-1 to 1.01µm2s-1, and ideal tumor ablation at the same time. In contrast to customary urease-driven nanodrug-stacked engine, this HANM@FI has both targeting and imaging-guided capabilities, and finally achieves superior anti-tumor effects without chemotherapy drugs, through a "two-in-one" (motor mobility plus unique phototherapy in chemotherapy-drugfree phototherapy) strategy. This PTI effect with urease-driven nanomotors may offer further possibilities for future clinical applications of nanomedicines by enabling deep penetration and a subsequent chemotherapy-drugfree combination therapy strategy.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Humans , Urease , Serum Albumin, Human , Nanoparticles/therapeutic use , Neoplasms/drug therapy , Indocyanine Green/pharmacology , Cell Line, Tumor
SELECTION OF CITATIONS
SEARCH DETAIL