Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Plant Physiol ; 193(1): 627-642, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37233029

ABSTRACT

Protecting haploid pollen and spores against UV-B light and high temperature, 2 major stresses inherent to the terrestrial environment, is critical for plant reproduction and dispersal. Here, we show flavonoids play an indispensable role in this process. First, we identified the flavanone naringenin, which serves to defend against UV-B damage, in the sporopollenin wall of all vascular plants tested. Second, we found that flavonols are present in the spore/pollen protoplasm of all euphyllophyte plants tested and that these flavonols scavenge reactive oxygen species to protect against environmental stresses, particularly heat. Genetic and biochemical analyses showed that these flavonoids are sequentially synthesized in both the tapetum and microspores during pollen ontogeny in Arabidopsis (Arabidopsis thaliana). We show that stepwise increases in the complexity of flavonoids in spores/pollen during plant evolution mirror their progressive adaptation to terrestrial environments. The close relationship between flavonoid complexity and phylogeny and its strong association with pollen survival phenotypes suggest that flavonoids played a central role in the progression of plants from aquatic environments into progressively dry land habitats.


Subject(s)
Arabidopsis , Flavonoids , Plants , Pollen/genetics , Arabidopsis/genetics , Flavonols , Spores
2.
Article in Chinese | WPRIM | ID: wpr-928185

ABSTRACT

Angong Niuhuang Pills(AGNHP) are effective in clearing heat, removing the toxin, and eliminating phlegm for resuscitation. Clinically, it is widely used to treat various diseases such as febrile convulsion due to heat attacking pericardium, but its therapeutic effects on heart failure(HF) have not been well recognized. In this study, the profiles of differential metabolites regulated by AGNHP were identified by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS). The underlying mechanism of AGNHP against HF was illustrated based on the integrated analysis of pharmacological data and metabolic molecular network. The HF model was induced by isoproterenol in mice. After oral administration of AGNHP for one week, cardiac functions in HF mice were evaluated by echocardiography, and serum samples of mice were collected for metabolomics analysis. Eight differential metabolites of AGNHP against HF were screened out through partial least square discriminant analysis(PLS-DA) and input into MetaboAnalyst for the analysis of metabolic pathways. Moreover, the critical metabolic pathways regulated by AGNHP were enriched according to the potential targets of major compounds in AGNHP. After AGNHP treatment, the recovered index of relative content of some metabolites underwent cross-scale fusion analysis with therapeutic efficacy data, followed by "compound-reaction-enzyme-gene" network analysis. It is inferred that the anti-HF effects of AGNHP may be attributed to the metabolism of arachidonic acid, amino acid, glycerophospholipid, and linoleic acid. The cross-scale polypharmacological analysis method developed in this study provides a new method to interpret scientific principles of AGNHP against HF with modern technologies.


Subject(s)
Animals , Mice , Biomarkers , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal , Heart Failure/drug therapy , Metabolomics
3.
Plant Reprod ; 34(2): 91-101, 2021 06.
Article in English | MEDLINE | ID: mdl-33903950

ABSTRACT

The pollen coat, which forms on the pollen surface, consists of a lipid-protein matrix. It protects pollen from desiccation and is involved in adhesion, pollen-stigma recognition, and pollen hydration during interactions with the stigma. The classical methods used for pollen coat observation are scanning and transmission electron microscopy. In this work, we screened a collection of fluorescence dyes and identified two fluorescent brighteners FB-52 and FB-184. When they were used together with the exine-specific dye, Basic fuchsin, the pollen coat and the exine structures could be clearly visualized in the pollen of Brassica napus. This co-staining method was applied successfully in staining pollen from Fraxinus chinensis, Calystegia hederacea, and Petunia hybrida. Using this method, small pollen coat-containing cavities were detected in the outer pollen wall layer of Oryza sativa and Zea mays. We further showed these dyes are compatible with fluorescent protein markers. In the Arabidopsis thaliana transgenic line of GFP-tagged pollen coat protein GRP19, GRP19-GFP was observed to form particles at the periphery of pollen coat. This simple staining method is expected to be widely used for the studies of the palynology as well as the pollen-stigma interaction.


Subject(s)
Arabidopsis , Coloring Agents , Lipids , Pollen , Staining and Labeling
4.
Mol Plant ; 13(11): 1644-1653, 2020 11 02.
Article in English | MEDLINE | ID: mdl-32810599

ABSTRACT

The outer wall of pollen and spores, namely the exine, is composed of sporopollenin, which is highly resistant to chemical reagents and enzymes. In this study, we demonstrated that phenylpropanoid pathway derivatives are essential components of sporopollenin in seed plants. Spectral analyses showed that the autofluorescence of Lilium and Arabidopsis sporopollenin is similar to that of lignin. Thioacidolysis and NMR analyses of pollen from Lilium and Cryptomeria further revealed that the sporopollenin of seed plants contains phenylpropanoid derivatives, including p-hydroxybenzoate (p-BA), p-coumarate (p-CA), ferulate (FA), and lignin guaiacyl (G) units. The phenylpropanoid pathway is expressed in the tapetum in Arabidopsis, consistent with the fact that the sporopollenin precursor originates from the tapetum. Further germination and comet assays showed that this pathway plays an important role in protection of pollen against UV radiation. In the pteridophyte plant species Ophioglossum vulgatum and Lycopodium clavata, phenylpropanoid derivatives including p-BA and p-CA were also detected, but G units were not. Taken together, our results indicate that phenylpropanoid derivatives are essential for sporopollenin synthesis in vascular plants. In addition, sporopollenin autofluorescence spectra of bryophytes, such as Physcomitrella and Haplocladium, exhibit distinct characteristics compared with those of vascular plants, indicating the diversity of sporopollenin among land plants.


Subject(s)
Biopolymers/chemistry , Carotenoids/chemistry , Phenylpropionates/chemistry , Plants/chemistry , Pollen/chemistry , Arabidopsis , Lilium , Pollen/radiation effects , Radiation-Protective Agents
5.
BMC Plant Biol ; 17(1): 243, 2017 Dec 19.
Article in English | MEDLINE | ID: mdl-29258431

ABSTRACT

BACKGROUND: In Arabidopsis, the tapetum and microsporocytes are critical for pollen formation. Previous studies have shown that ARF17 is expressed in microsporocytes and tetrads and directly regulates tetrad wall synthesis for pollen formation. ARF17 is the direct target of miR160, and promoterARF17::5mARF17 (5mARF17/WT) transgenic plants, which have five silent mutations within the miR160-complementary domain, are sterile. RESULTS: Here, we found that ARF17 is also expressed in the tapetum, which was defective in arf17 mutants. Compared with arf17 mutants, 5mARF17/WT plants had abnormal tapetal cells and tetrads but were less vacuolated in the tapetum. Immunocytochemical assays showed that the ARF17 protein over-accumulated in tapetum, microsporocytes and tetrads of 5mARF17/WT plants at early anther stages, but its expression pattern was not affected during anther development. 5mARF17 driven by its native promoter did not rescue the arf17 male-sterile phenotype. The expression of 5mARF17 driven by the tapetum-specific promoter A9 led to a defective tapetum and male sterility in transgenic plants. These results suggest that the overexpression of ARF17 in the tapetum and microsporocytes of 5mARF17/WT plants leads to male sterility. Microarray data revealed that an abundance of genes involved in transcription and translation are ectopically expressed in 5mARF17/WT plants. CONCLUSIONS: Our work shows that ARF17 plays an essential role in anther development and pollen formation, and ARF17 expression under miR160 regulation is critical for its function during anther development.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/growth & development , Arabidopsis/genetics , Flowers/growth & development , Gene Expression Regulation, Plant , Pollen/growth & development , Transcription Factors/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Flowers/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/metabolism , Pollen/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL