Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Publication year range
1.
Bioresour Technol ; 380: 129095, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37100303

ABSTRACT

The effects of the co-addition of fungal agents and biochar on physicochemical properties, odor emissions, microbial community structure, and metabolic functions were investigated during the in-situ treatment of food waste. The combined addition of fungal agents and biochar decreased cumulative NH3, H2S, and VOCs emissions by 69.37%, 67.50%, and 52.02%, respectively. The predominant phyla throughout the process were Firmicutes, Actinobacteria, Cyanobacteria, and Proteobacteria. Combined treatment significantly impacted the conversion and release of nitrogen from the perspective of the variation of nitrogen content between different forms. FAPROTAX analysis revealed that the combined application of fungal agents and biochar could effectively inhibit nitrite ammonification and reduce the emission of odorous gases. This work aims to clarify the combined effect of fungal agents and biochar on odor emission and provide a theoretical basis for developing an environmentally friendly in-situ efficient biological deodorization (IEBD) technology.


Subject(s)
Microbiota , Refuse Disposal , Soil/chemistry , Odorants , Food , Nitrogen/analysis , Charcoal/pharmacology
2.
J Microbiol Biotechnol ; 30(8): 1252-1260, 2020 Aug 28.
Article in English | MEDLINE | ID: mdl-32522969

ABSTRACT

(R)-2-(4-hydroxyphenoxy)propionic acid (HPOPA) is a key intermediate for the preparation of aryloxyphenoxypropionic acid herbicides (R-isomer). In order to improve the HPOPA production from the substrate (R)-2-phenoxypropionic acid (POPA) with Beauveria bassiana CCN-A7, static cultivation and H2O2 addition were attempted and found to be conducive to the task at hand. This is the first report on HPOPA production under static cultivation and reactive oxygen species (ROS) induction. On this premise, the cultivation conditions and fermentation medium compositions were optimized. As a result, the optimal carbon source, organic nitrogen source, and inorganic nitrogen source were determined to be glucose, peptone, and ammonium sulfate, respectively. The optimal inoculum size and fermentation temperature were 13.3% and 28°C, respectively. The significant factors including glucose, peptone, and H2O2, identified based on Plackett-Burman design, were further optimized through Central Composite Design (CCD). The optimal concentrations/amounts were as follows: glucose 38.81 g/l, peptone 7.28 g/l, and H2O2 1.08 ml/100 ml. Under the optimized conditions, HPOPA titer was improved from 9.60 g/l to 19.53 g/l, representing an increase of 2.03- fold. The results obtained in this work will provide novel strategies for improving the biosynthesis of hydroxy aromatics.


Subject(s)
Beauveria/metabolism , Culture Media/chemistry , Hydrogen Peroxide/metabolism , Propionates/metabolism , Carbon , Dietary Supplements , Fermentation , Nitrogen/metabolism , Reactive Oxygen Species , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL