Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Acta Pharm Sin B ; 13(8): 3545-3560, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37655337

ABSTRACT

Nonalcoholic steatohepatitis (NASH) is a spectrum of chronic liver disease characterized by hepatic lipid metabolism disorder. Recent reports emphasized the contribution of triglyceride and diglyceride accumulation to NASH, while the other lipids associated with the NASH pathogenesis remained unexplored. The specific purpose of our study was to explore a novel pathogenesis and treatment strategy of NASH via profiling the metabolic characteristics of lipids. Herein, multi-omics techniques based on LC-Q-TOF/MS, LC-MS/MS and MS imaging were developed and used to screen the action targets related to NASH progress and treatment. A methionine and choline deficient (MCD) diet-induced mouse model of NASH was then constructed, and Schisandra lignans extract (SLE) was applied to alleviate hepatic damage by regulating the lipid metabolism-related enzymes CES2A and CYP4A14. Hepatic lipidomics indicated that MCD-diet led to aberrant accumulation of phosphatidylethanolamines (PEs), and SLE could significantly reduce the accumulation of intrahepatic PEs. Notably, exogenous PE (18:0/18:1) was proved to significantly aggravate the mitochondrial damage and hepatocyte apoptosis. Supplementing PE (18:0/18:1) also deteriorated the NASH progress by up regulating intrahepatic proinflammatory and fibrotic factors, while PE synthase inhibitor exerted a prominent hepatoprotective role. The current work provides new insights into the relationship between PE metabolism and the pathogenesis of NASH.

2.
Ecotoxicol Environ Saf ; 221: 112422, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34144252

ABSTRACT

Homogeneous Cu2+-mediated activation of H2O2 has been widely applied for the removal of organic contaminants, but fairly high dosage of Cu2+ is generally required and may cause secondary pollution. In the present study, minute Cu2+ (2.5 µM) catalyzed H2O2 exhibited excellent efficiency in degradation of organic pollutants with the assistant of naturally occurring level HCO3- (1 mM). In a typical case, acetaminophen (ACE) was completely eliminated within 10 min which followed the pseudo-first-order kinetics. Singlet oxygen and superoxide radical rather than traditionally identified hydroxyl radical were the predominant reactive oxygen species (ROS) responsible for ACE degradation. Meanwhile, Cu3+ was deduced through Cu+ and p-hydroxybenzoic acid formation analysis. CuCO3(aq) was the main complex with high reactivity for the activation of H2O2 to form ROS and Cu3+. The removal efficiency of ACE depended on the operating parameters, such as Cu2+, HCO3- and H2O2 dosage, solution initial pH. The presence of Cl-, HPO42-, humic acid were found to retard ACE removal while other anions such as SO42- and NO3- had no obvious effect. ACE exhibited lower degradation efficiency in real water matrices than that in ultra-pure water. Nevertheless, 58-100% of ACE was removed from domestic wastewater, lake water and tap water within 60 min. Moreover, eight intermediate products were identified and the possible degradation pathways of ACE were proposed. Additionally, other typical organic pollutants including bisphenol A, norfloxacin, lomefloxacin hydrochloride and sulfadiazine, exhibited great removal efficiency in the Cu2+/H2O2/HCO3- system.


Subject(s)
Acetaminophen/chemistry , Bicarbonates/chemistry , Copper/chemistry , Hydrogen Peroxide/chemistry , Reactive Oxygen Species/chemistry , Water Pollutants, Chemical/chemistry , Catalysis , Organic Chemicals/chemistry , Water Purification/methods
3.
Drug Metab Dispos ; 48(10): 1092-1103, 2020 10.
Article in English | MEDLINE | ID: mdl-32719086

ABSTRACT

The action principles of traditional Chinese medicines (TCMs) feature multiactive components, multitarget sites, and weak combination with action targets. In the present study, we performed an integrated analysis of metabonomics, proteomics, and lipidomics to establish a scientific research system on the underlying mechanism of TCMs, and Schisandra lignan extract (SLE) was selected as a model TCM. In metabonomics, several metabolic pathways were found to mediate the liver injury induced by acetaminophen (APAP), and SLE could regulate the disorder of lipid metabolism. The proteomic study further proved that the hepatoprotective effect of SLE was closely related to the regulation of lipid metabolism. Indeed, the results of lipidomics demonstrated that SLE dosing has an obvious callback effect on APAP-induced lipidic profile shift. The contents of 25 diglycerides (DAGs) and 21 triglycerides (TAGs) were enhanced significantly by APAP-induced liver injury, which could further induce liver injury and inflammatory response by upregulating protein kinase C (PKCß, PKCγ, PKCδ, and PKCθ). The upregulated lipids and PKCs could be reversed to the normal level by SLE dosing. More importantly, phosphatidic acid phosphatase, fatty acid transport protein 5, and diacylglycerol acyltransferase 2 were proved to be positively associated with the regulation of DAGs and TAGs. SIGNIFICANCE STATEMENT: Integrated multiomics was first used to reveal the mechanism of APAP-induced acute liver failure (ALF) and the hepatoprotective role of SLE. The results showed that the ALF caused by APAP was closely related to lipid regulation and that SLE dosing could exert a hepatoprotective role by reducing intrahepatic diglyceride and triglyceride levels. Our research can not only promote the application of multicomponent technology in the study of the mechanism of traditional Chinese medicines but also provide an effective approach for the prevention and treatment of ALF.


Subject(s)
Acetaminophen/adverse effects , Chemical and Drug Induced Liver Injury/prevention & control , Drugs, Chinese Herbal/administration & dosage , Protective Agents/administration & dosage , Schisandra/chemistry , Administration, Oral , Animals , Cells, Cultured , Chemical and Drug Induced Liver Injury/blood , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/pathology , Diglycerides/blood , Diglycerides/metabolism , Disease Models, Animal , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/isolation & purification , Hepatocytes , Humans , Lignans/administration & dosage , Lignans/isolation & purification , Lipid Metabolism/drug effects , Lipidomics , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Mice , Primary Cell Culture , Protective Agents/chemistry , Protein Kinase C/metabolism , Proteomics , Triglycerides/blood , Triglycerides/metabolism
4.
Acta Pharmacol Sin ; 39(11): 1804-1815, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29921884

ABSTRACT

Xuezhikang capsule (XZK) is a traditional Chinese medicine that contains lovastatin (Lv) for hyperlipidemia treatment, although it has fewer side effects than Lv. However, the pharmacokinetic mechanisms contributing to its distinct efficacy and low side effects are unclear. Mice were fed a high-fat diet (HFD) for 6 weeks to induce hyperlipidemia. We first conducted the pharmacokinetic studies in HFD mice following oral administration of Lv (10 mg/kg, i.g.) and found that HFD remarkably decreased the active form of Lv (the lovastatin acid, LvA) exposure in the circulation system, especially in the targeting organ liver, with a declined conversion from Lv to LvA, whereas the Lv (responsible for myotoxicity) exposure in muscle markedly increased. Then we compared the pharmacokinetic profiles of Lv in HFD mice after the oral administration of XZK (1200 mg/kg, i.g.) or an equivalent dose of Lv (10 mg/kg, i.g.). A higher exposure of LvA and lower exposure of Lv were observed after XZK administration, suggesting a pharmacokinetic interaction of some ingredients in XZK. Further studies revealed that HFD promoted the inflammation and inhibited carboxylesterase (CES) activities in the intestine and the liver, thus contributing to the lower transformation of Lv into LvA. In contrast, XZK inhibited the inflammation and upregulated CES in the intestine and the liver. Finally, we evaluated the effects of monacolins and phytosterols, the fractional extracts of isoflavones, on inflammatory LS174T or HepG2 cells, which showed that isoflavones inhibited inflammation, upregulated CES, and markedly enhanced the conversion of Lv into LvA. For the first time, we provide evidence that isoflavones and Lv in XZK act in concert to enhance the efficacy and reduce the side effects of Lv.


Subject(s)
Drugs, Chinese Herbal/therapeutic use , Hyperlipidemias/drug therapy , Isoflavones/pharmacology , Lovastatin/analogs & derivatives , Lovastatin/therapeutic use , Administration, Oral , Animals , Carboxylesterase/genetics , Cell Line, Tumor , Down-Regulation/drug effects , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/metabolism , Drugs, Chinese Herbal/pharmacokinetics , Humans , Inflammation/drug therapy , Lovastatin/administration & dosage , Lovastatin/metabolism , Lovastatin/pharmacokinetics , Male , Mice, Inbred C57BL , Pregnane X Receptor/genetics , Up-Regulation/drug effects
5.
FASEB J ; 32(2): 757-767, 2018 02.
Article in English | MEDLINE | ID: mdl-28970254

ABSTRACT

Silybin is one of the effective, traditional Chinese medicines used as a hepatoprotective agent in nonalcoholic fatty liver disease (NAFLD) therapy worldwide, and the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome has been recognized as an important factor involved in NAFLD development. However, little is known about the mechanisms of silybin in the regulation of high-fat diet (HFD)-induced liver inflammation. In our study, we found that silybin inhibited endoplasmic reticulum stress and NLRP3 inflammasome activation in the livers of HFD-fed mice and in cultured hepatocytes. Phosphorylation of inositol-requiring enzyme (IRE)1α and eIF2α, expression of thioredoxin-interacting protein and cleaved caspase-1, and release of IL-1ß were reduced by silybin. In addition, silybin inhibited the approach of calreticulin and translocase of outer membrane 20 (Tom20), prevented assembly of the NLRP3 inflammasome complex, and suppressed the accumulation of acetylated α-tubulin in the perinuclear region. Both MEC-17 and sirtuin 2 (SIRT2) were influenced by palmitate and silybin, whereas histone deacetylase 6 was not affected. In addition, supplementing NAD+ directly or increasing NAD+ concentration with silybin could maintain the activity of SIRT2. The anti-inflammatory effect of silybin was blocked by SIRT2 silencing or by the SIRT2 inhibitor AGK2, as evidenced by NLRP3/ASC colocalization, AC-α-tubulin expression, and IL-1ß release. These findings indicate that the NAD+/SIRT2 pathway is an important mediator through which silybin prevents NLRP3 inflammasome activation during NAFLD.-Zhang, B., Xu, D., She, L., Wang, Z., Yang, N., Sun, R., Zhang, Y., Yan, C., Wei, Q., Aa, J., Liu, B., Wang, G., Xie, Y. Silybin inhibits NLRP3 inflammasome assembly through the NAD+/SIRT2 pathway in mice with nonalcoholic fatty liver disease.


Subject(s)
Inflammasomes/metabolism , NAD/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Signal Transduction , Silymarin/pharmacology , Sirtuin 2/metabolism , Animals , Caspase 1/metabolism , Endoribonucleases/metabolism , Eukaryotic Initiation Factor-2/metabolism , Furans/pharmacology , Gene Silencing , Interleukin-1beta/metabolism , Male , Membrane Transport Proteins/metabolism , Mice , Mitochondrial Precursor Protein Import Complex Proteins , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Protein Serine-Threonine Kinases/metabolism , Quinolines/pharmacology , Receptors, Cell Surface/metabolism , Silybin , Sirtuin 2/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL