Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Food Biochem ; 46(12): e14460, 2022 12.
Article in English | MEDLINE | ID: mdl-36200742

ABSTRACT

Forsythia suspensa (Thunb.) Vahl (Oleaceae) leaves are valuable sources of phillygenin. This study aimed to isolate phillygenin from F. suspensa leaves and examine its analgesic and anti-inflammatory effects. Phillygenin was successfully extracted and isolated from F. suspensa leaves after fermentation. Phillygenin significantly reduced the number of writhing induced by acetic acid, prolonged the latency period in the hot plate test, and inhibited the xylene-induced ear edema and carrageenan-induced paw edema in mice. IL-6, TNF-α, IL-1ß, NO, and PGE2 levels in the carrageenan-induced paw edema were notably reduced after pretreatment with phillygenin. Phillygenin significantly decreased the iNOS and COX-2 protein expressions and the IκB-α and NF-κB p65 phosphorylation. This study demonstrated that phillygenin is a potential therapeutic candidate for managing pain and inflammation-mediated disorders. The study contributes to the comprehensive development and utilization of F. suspensa leaves for economic and health care. PRACTICAL APPLICATIONS: Phillygenin is one of the major active ingredients in Forsythia suspensa. But the content of phillygenin in F. suspensa is very low which limits its application. Phillygenin has potential pharmacological activity and anti-inflammatory properties. However, the potential effects of phillygenin on analgesic activity have not been clarified. Furthermore, the data on its anti-inflammatory activity in vivo are relatively limited. This study evaluated the analgesic activity for the first time and the acute anti-inflammatory effect of phillygenin from F. suspensa leaves by fermentation, which indicated phillygenin is a potential therapeutic candidate for managing pain and inflammation-mediated disorders.


Subject(s)
Forsythia , Mice , Animals , Carrageenan/adverse effects , Plant Extracts , Anti-Inflammatory Agents/pharmacology , Analgesics/adverse effects , Edema/chemically induced , Edema/drug therapy , Edema/metabolism , Inflammation/drug therapy , Pain/drug therapy
2.
Ecotoxicol Environ Saf ; 236: 113481, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35405527

ABSTRACT

Aflatoxin B1 (AFB1), a mycotoxin contaminating food and feed, can trigger liver immune toxicity and threaten the poultry industry. Phillygenin (PHI) is a natural lignan derived primarily from Forsythia suspensa with hepatoprotective pharmacological and medicinal properties. This research aimed to investigate the preventive effects of PHI on the toxicity of AFB1 in the liver of chickens. Chickens were administered with AFB1 (2.8 mg/kg) and/or treated with PHI (24 mg/kg) for 33 days. The histopathological changes, serum biochemical indices, oxidative damage, inflammatory mediators, apoptosis, and activation of the NF-κB and Nrf2 signaling pathways were measured. Results revealed that dietary PHI ameliorated liver function indicators, reduced the malondialdehyde and inflammatory mediator production and the apoptotic cell number, and increased the antioxidant enzyme contents and Bcl-2 level. The quantitative realtime PCR and Western blot results revealed that PHI reduced p53, cytochrome c, Bax, caspase-9, and caspase-3 levels, normalized the NF-κB p65 phosphorylation, and upregulated the Nrf2 and its downstream genes expression in chicken liver. These results indicated that PHI has beneficial effects on AFB1-induced liver damage, oxidative damage, inflammatory response, apoptosis, and immunotoxicity by inhibiting NF-κB and activating the Nrf2 signaling pathway in chickens. This study provides new insight into the therapeutic uses of PHI.


Subject(s)
Aflatoxin B1 , Lignans , Aflatoxin B1/toxicity , Animals , Apoptosis , Chickens/metabolism , Dietary Supplements , Inflammation/metabolism , Lignans/metabolism , Lignans/pharmacology , Liver , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL