Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
PeerJ ; 12: e16959, 2024.
Article in English | MEDLINE | ID: mdl-38406278

ABSTRACT

Background: Endophytic fungi can enhance the growth and synthesis of secondary metabolites in medicinal plants. Salvia miltiorrhiza Bunge is frequently employed for treating cardiovascular and cerebrovascular ailments, with the primary bioactive components being salvianolic acid and tanshinone. However, their levels in cultivated S. miltiorrhiza are inferior to that of the wild herbs, so the production of high-quality medicinal herbs is sharply declining. Consequently, the utilization of beneficial endophytic fungi to improve the yield and quality of S. miltiorrhiza holds great significance for the cultivation of medicinal plants. Methods: In this study, nine non-pathogenic, endophytic fungal strains were introduced into sterile S. miltiorrhiza seedlings and cultivated both in vitro and in situ (the greenhouse). The effects of these strains on the growth indices, C and N metabolism, antioxidant activity, photosynthesis, and content of bioactive ingredients in S. miltiorrhiza were then evaluated. Results: The results showed that the different genera, species, or strains of endophytic fungi regulated the growth and metabolism of S. miltiorrhiza in unique ways. These endophytic fungi primarily exerted their growth-promoting effects by increasing the net photosynthetic rate, intercellular CO2 concentration, and the activities of sucrose synthase, sucrose phosphate synthase, nitrate reductase, and glutamine synthetase. They also enhanced the adaptability and resistance to environmental stresses by improving the synthesis of osmoregulatory compounds and the activity of antioxidant enzymes. However, their regulatory effects on the growth and development of S. miltiorrhiza were affected by environmental changes. Moreover, the strains that significantly promoted the synthesis and accumulation of phenolic acids inhibited the accumulation of tanshinones components, and vice versa. The endophytic fungal strains Penicillium meloforme DS8, Berkeleyomyces basicola DS10, and Acremonium sclerotigenum DS12 enhanced the bioaccumulation of tanshinones. Fusarium solani DS16 elevated the rosmarinic acid content and yields in S. miltiorrhiza. The strain Penicillium javanicum DS5 improved the contents of dihydrotanshinone, salvianolic acid B, and rosmarinic acid. The strains P. meloforme DS8 and B. basicola DS10 improved resistance. Conclusion: Various endophytic fungi affected the quality and yield of S. miltiorrhiza by regulating different physiological and metabolic pathways. This study also provides a novel and effective method to maximize the effects of beneficial endophytic fungi by selecting specific strains to design microbial communities based on the different ecological functions of endophytic fungi under varying environments and for specific production goals.


Subject(s)
Salvia miltiorrhiza , Antioxidants/metabolism , Rosmarinic Acid
2.
BMC Plant Biol ; 23(1): 597, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38017446

ABSTRACT

BACKGROUND: Arbuscular mycorrhizal fungi (AMF) form symbiotic relationships with various terrestrial plants and have attracted considerable interest as biofertilizers for improving the quality and yield of medicinal plants. Despite the widespread distribution of AMFs in Salvia miltiorrhiza Bunge's roots, research on the impact of multiple AMFs on biomass and active ingredient accumulations has not been conducted. In this study, the effects of five native AMFs (Glomus formosanum, Septoglomus constrictum, Rhizophagus manihotis, Acaulospora laevis, and Ambispora gerdemannii) and twenty-six communities on the root biomass and active ingredient concentrations of S. miltiorrhiza were assessed using the total factor design method. RESULTS: Thirty-one treatment groups formed symbiotic relationships with S. miltiorrhiza based on the pot culture results, and the colonization rate ranged from 54.83% to 89.97%. AMF communities had higher colonization rates and total phenolic acid concentration than single AMF, and communities also appeared to have higher root fresh weight, dry weight, and total phenolic acid concentration than single inoculations. As AMF richness increased, there was a rising trend in root biomass and total tanshinone accumulations (ATTS), while total phenolic acid accumulations (ATP) showed a decreasing trend. This suggests that plant productivity was influenced by the AMF richness, with higher inoculation benefits observed when the communities contained three or four AMFs. Additionally, the affinities of AMF members were also connected to plant productivity. The inoculation effect of closely related AMFs within the same family, such as G. formosanum, S. constrictum, and R. manihotis, consistently yielded lower than that of mono-inoculation when any combinations were applied. The co-inoculation of S. miltiorrhiza with nearby or distant AMFs from two families, such as G. formosanum, R. manihotis, and Ac. laevis or Am. gerdemannii resulted in an increase of ATP and ATTS by more than 50%. AMF communities appear to be more beneficial to the yield of bioactive constituents than the single AMF, but overall community inoculation effects are related to the composition of AMFs and the relationship between members. CONCLUSION: This study reveals that the AMF community has great potential to improve the productivity and the accumulation of bioactive constituents in S. miltiorrhiza, indicating that it is an effective way to achieve sustainable agricultural development through using the AMF community.


Subject(s)
Mycorrhizae , Plants, Medicinal , Salvia miltiorrhiza , Humans , Plants, Medicinal/microbiology , Plant Roots , Fungi , Adenosine Triphosphate
3.
Front Plant Sci ; 14: 1263981, 2023.
Article in English | MEDLINE | ID: mdl-37810396

ABSTRACT

Introduction: Ligusticum chuanxiong Hort. is a widely used medicinal plant, but its growth and quality can be negatively affected by contamination with the heavy metal cadmium (Cd). Despite the importance of understanding how L. chuanxiong responds to Cd stress, but little is currently known about the underlying mechanisms. Methods: To address this gap, we conducted physiological and transcriptomic analyses on L. chuanxiong plants treated with different concentrations of Cd2+ (0 mg·L-1, 5 mg·L-1, 10 mg·L-1, 20 mg·L-1, and 40 mg·L-1). Results: Our findings revealed that Cd stress inhibited biomass accumulation and root development while activating the antioxidant system in L. chuanxiong. Root tissues were the primary accumulation site for Cd in this plant species, with Cd being predominantly distributed in the soluble fraction and cell wall. Transcriptomic analysis demonstrated the downregulation of differential genes involved in photosynthetic pathways under Cd stress. Conversely, the plant hormone signaling pathway and the antioxidant system exhibited positive responses to Cd regulation. Additionally, the expression of differential genes related to cell wall modification was upregulated, indicating potential enhancements in the root cell wall's ability to sequester Cd. Several differential genes associated with metal transport proteins were also affected by Cd stress, with ATPases, MSR2, and HAM3 playing significant roles in Cd passage from the apoplast to the cell membrane. Furthermore, ABC transport proteins were found to be key players in the intravesicular compartmentalization and efflux of Cd. Discussion: In conclusion, our study provides preliminary insights into the mechanisms underlying Cd accumulation and tolerance in L. chuanxiong, leveraging both physiological and transcriptomic approaches. The decrease in photosynthetic capacity and the regulation of plant hormone levels appear to be major factors contributing to growth inhibition in response to Cd stress. Moreover, the upregulation of differential genes involved in cell wall modification suggests a potential mechanism for enhancing root cell wall capabilities in isolating and sequestering Cd. The involvement of specific metal transport proteins further highlights their importance in Cd movement within the plant.

4.
Microb Ecol ; 86(4): 2934-2948, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37667132

ABSTRACT

The plant's endophytic fungi play an important role in promoting host development and metabolism. Studies have shown that the factors affecting the assembly of the endophyte community mainly include host genotype, vertical transmission, and soil origin. However, we do not know the role of vertically transmitted endohytic fungi influences on the host-plant's endophytic community assembly. Salvia miltiorrhiza from three production areas were used as research objects; we constructed three production area genotypes of S. miltiorrhiza regenerated seedlings simultaneously. Based on high-throughput sequencing, we analyzed the effects of genotype, soil origin, and vertical transmission on endophytic fungal communities. The results show that the community of soil origins significantly affected the endophytic fungal community in the regenerated seedlings of S. miltiorrhiza. The influence of genotype on community composition occurs through a specific mechanism. Genotype may selectively screen certain communities into the seed, thereby exerting selection pressure on the community composition process of offspring. As the number of offspring increases gradually, the microbiota, controlled by genotype and transmitted vertically, stabilizes, ultimately resulting in a significant effect of genotype on community composition.Furthermore, we observed that the taxa influencing the active ingredients are also selected as the vertically transmitted community. Moreover, the absence of an initial vertically transmitted community in S. miltiorrhiza makes it more vulnerable to infection by pathogenic fungi. Therefore, it is crucial to investigate and comprehend the selection model of the vertically transmitted community under varying genotypes and soil conditions. This research holds significant implications for enhancing the quality and yield of medicinal plants and economic crops.


Subject(s)
Microbiota , Salvia miltiorrhiza , Salvia miltiorrhiza/genetics , Salvia miltiorrhiza/metabolism , Fungi/genetics , Endophytes/genetics , Microbiota/genetics , Soil , Seedlings , Plant Roots/microbiology
5.
Front Plant Sci ; 14: 1166420, 2023.
Article in English | MEDLINE | ID: mdl-37313257

ABSTRACT

Coptis plants (Ranunculaceae) contain high levels of isoquinoline alkaloids and have a long history of medicinal use. Coptis species are of great value in pharmaceutical industries and scientific research. Mitochondria are considered as one of the central units for receiving stress signals and arranging immediate responses. Comprehensive characterizations of plant mitogenomes are imperative for revealing the relationship between mitochondria, elucidating biological functions of mitochondria and understanding the environmental adaptation mechanisms of plants. Here, the mitochondrial genomes of C. chinensis, C. deltoidea and C. omeiensis were assembled through the Nanopore and Illumina sequencing platform for the first time. The genome organization, gene number, RNA editing sites, repeat sequences, gene migration from chloroplast to mitochondria were compared. The mitogenomes of C. chinensis, C. deltoidea and C. omeiensis have six, two, two circular-mapping molecules with the total length of 1,425,403 bp, 1,520,338 bp and 1,152,812 bp, respectively. The complete mitogenomes harbors 68-86 predicted functional genes including 39-51 PCGs, 26-35 tRNAs and 2-5 rRNAs. C. deltoidea mitogenome host the most abundant repeat sequences, while C. chinensis mitogenome has the largest number of transferred fragments from its chloroplasts. The large repeat sequences and foreign sequences in the mitochondrial genomes of Coptis species were related to substantial rearrangements, changes in relative position of genes and multiple copy genes. Further comparative analysis illustrated that the PCGs under selected pressure in mitochondrial genomes of the three Coptis species mainly belong to the mitochondrial complex I (NADH dehydrogenase). Heat stress adversely affected the mitochondrial complex I and V, antioxidant enzyme system, ROS accumulation and ATP production of the three Coptis species. The activation of antioxidant enzymes, increase of T-AOC and maintenance of low ROS accumulation in C. chinensis under heat stress were suggested as the factors for its thermal acclimation and normal growth at lower altitudes. This study provides comprehensive information on the Coptis mitogenomes and is of great importance to elucidate the mitochondrial functions, understand the different thermal acclimation mechanisms of Coptis plants, and breed heat-tolerant varieties.

6.
PeerJ ; 11: e15332, 2023.
Article in English | MEDLINE | ID: mdl-37187524

ABSTRACT

Long non-coding RNAs (lncRNAs) are transcripts of more than 200 nucleotides (nt) in length, with minimal or no protein-coding capacity. Increasing evidence indicates that lncRNAs play important roles in the regulation of gene expression including in the biosynthesis of secondary metabolites. Salvia miltiorrhiza Bunge is an important medicinal plant in China. Diterpenoid tanshinones are one of the main active components of S. miltiorrhiza. To better understand the role of lncRNAs in regulating diterpenoid biosynthesis in S. miltiorrhiza, we integrated analysis of lncRNAs, mRNAs, and transcription factors (TFs) to identify network modules underlying diterpenoid biosynthesis based on transcriptomic data. In transcriptomic data, we obtained 6,651 candidate lncRNAs, 46 diterpenoid biosynthetic pathway genes, and 11 TFs involved in diterpenoid biosynthesis. Combining the co-expression and genomic location analysis, we obtained 23 candidate lncRNA-mRNA/TF pairs that were both co-expressed and co-located. To further observe the expression patterns of these 23 candidate gene pairs, we analyzed the time-series expression of S. miltiorrhiza induced by methyl jasmonate (MeJA). The results showed that 19 genes were differentially expressed at least a time-point, and four lncRNAs, two mRNAs, and two TFs formed three lncRNA-mRNA and/or TF network modules. This study revealed the relationship among lncRNAs, mRNAs, and TFs and provided new insight into the regulation of the biosynthetic pathway of S. miltiorrhiza diterpenoids.


Subject(s)
Diterpenes , RNA, Long Noncoding , Salvia miltiorrhiza , RNA, Long Noncoding/genetics , Salvia miltiorrhiza/genetics , RNA, Messenger/genetics , Transcription Factors/genetics , Diterpenes/metabolism
7.
Plant Signal Behav ; 18(1): 2199644, 2023 12 31.
Article in English | MEDLINE | ID: mdl-37039834

ABSTRACT

The TOR (Target of Rapamycin) signaling pathway, which takes TOR kinase as the core, regulates the absorption, distribution, and recycling of nutrients by integrating metabolic network and other signaling pathways, thus participating in the plant growth-defense trade-off. While terpenoids play an important role in plant growth, development, stress response, and signal transduction. The effect of the TOR signaling pathway on terpenoid biosynthesis in plants has yet to be studied in detail. In this study, the tissue culture seedlings of Salvia miltiorrhiza were treated with the TOR inhibitor AZD8055. The results show that the roots of the control group had begun to grow on the 8th day, while the seedlings treated with AZD8055 had no rooting signs. Combined with the expression changes of genes related to the TOR signaling pathway in the first 8 days, samples on the 3rd, 6th, and 8th days were selected for RNA-Seq analysis. Through RNA-Seq analysis, a total of 50,689 unigenes were obtained from the samples of these three periods, of which 4088 unigenes showed differential expression. The function enrichment and time-series analysis of differentially expressed genes (DEGs) showed that the main influence of the TOR signal pathway on plant growth-related processes was gradually transmitted with treatment time after TOR was inhibited. Pathway enrichment analysis of DEGs showed that the genes in the biosynthesis of terpenoids, such as diterpenoid and carotenoid biosynthetic pathways, could be regulated. Compared with other stages, DEGs related to terpenoid biosynthesis were mainly regulated in the S2 stage. In addition, the genes involved in terpenoid skeleton biosynthesis was also considerably enriched in the S2 stage, according to the results of gene set enrichment analysis (GSEA) of unigenes. Inhibition of the TOR signaling pathway may affect the biosynthesis of terpenoid signaling molecules, inhibit gibberellin's biosynthesis, and promote abscisic acid's biosynthesis. This study has discussed the effect of interfering with the TOR pathway on terpenoid biosynthesis in S. miltiorrhiza from the perspective of omics and provides new insight into the interaction between the terpenoid biosynthesis pathway and the growth-defense trade-off of medicinal plants.


Subject(s)
Salvia miltiorrhiza , Terpenes , Terpenes/metabolism , Salvia miltiorrhiza/genetics , RNA-Seq , Metabolic Networks and Pathways , Signal Transduction
8.
PeerJ ; 10: e14464, 2022.
Article in English | MEDLINE | ID: mdl-36523473

ABSTRACT

In response to abiotic stresses, transcription factors are essential. Heat shock transcription factors (HSFs), which control gene expression, serve as essential regulators of plant growth, development, and stress response. As a model medicinal plant, Salvia miltiorrhiza is a crucial component in the treatment of cardiovascular illnesses. But throughout its growth cycle, S.miltiorrhiza is exposed to a series of abiotic challenges, including heat and drought. In this study, 35 HSF genes were identified based on genome sequencing of Salvia miltiorrhiza utilizing bioinformatics techniques. Additionally, 35 genes were classified into three groups by phylogeny and gene structural analysis, comprising 22 HSFA, 11 HSFB, and two HSFC. The distribution and sequence analysis of motif showed that SmHSFs were relatively conservative. In SmHSF genes, analysis of the promoter region revealed the presence of many cis-acting elements linked to stress, hormones, and growth and development, suggesting that these factors have regulatory roles. The majority of SmHSFs were expressed in response to heat and drought stress, according to combined transcriptome and real-time quantitative PCR (qRT-PCR) analyses. In conclusion, this study looked at the SmHSF gene family using genome-wide identification, evolutionary analysis, sequence characterization, and expression analysis. This research serves as a foundation for further investigations into the role of HSF genes and their molecular mechanisms in plant stress responses.


Subject(s)
Salvia miltiorrhiza , Heat Shock Transcription Factors/genetics , Salvia miltiorrhiza/genetics , Amino Acid Sequence , Transcription Factors/genetics , Stress, Physiological/genetics
9.
Front Pharmacol ; 13: 1048926, 2022.
Article in English | MEDLINE | ID: mdl-36506534

ABSTRACT

Edible herbal medicines contain macro- and micronutrients and active metabolites that can take part in biochemical processes to help achieve or maintain a state of well-being. Citri Reticulatae Pericarpium (CRP) is an edible and medicinal herb used as a component of the traditional Chinese medicine (TCM) approach to treating COVID-19 in China. However, the material basis and related mechanistic research regarding this herb for the treatment of COVID-19 are still unclear. First, a wide-targeted UPLC-ESI-MS/MS-based comparative metabolomics analysis was conducted to screen for the active metabolites of CRP. Second, network pharmacology was used to uncover the initial linkages among these metabolites, their possible targets, and COVID-19. Each metabolite was then further studied via molecular docking with the identified potential SARS-CoV-2 targets 3CL hydrolase, host cell target angiotensin-converting enzyme II, spike protein, and RNA-dependent RNA polymerase. Finally, the most potential small molecule compound was verified by in vitro and in vivo experiments, and the mechanism of its treatment of COVID-19 was further explored. In total, 399 metabolites were identified and nine upregulated differential metabolites were screened out as potential key active metabolites, among which isorhamnetin have anti-inflammatory activity in vitro validation assays. In addition, the molecular docking results also showed that isorhamnetin had a good binding ability with the key targets of COVID-19. Furthermore, in vivo results showed that isorhamnetin could significantly reduced the lung pathological injury and inflammatory injury by regulating ATK1, EGFR, MAPK8, and MAPK14 to involve in TNF signaling pathway, PI3K-Akt signalling pathway, and T cell receptor signaling pathway. Our results indicated that isorhamnetin, as screened from CRP, may have great potential for use in the treatment of patients with COVID-19. This study has also demonstrated that comparative metabolomics combined with network pharmacology strategy could be used as an effective approach for discovering potential compounds in herbal medicines that are effective against COVID-19.

10.
Molecules ; 27(14)2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35889336

ABSTRACT

Alzheimer's disease (AD) is a common age-related neurodegenerative disease that strikes millions worldwide. Herein, we demonstrate a new approach based on network target to identify anti-AD compounds from Danshen. Network pharmacology and molecular docking were employed to establish the DS-AD network, which mainly involved apoptosis of neuron cells. Then network scoring was confirmed via Connectivity Map analysis. M308 (Danshenxinkun D) was an anti-AD candidate with a high score (p < 0.01). Furthermore, we conducted ex vivo experiments with H2O2-treated PC12 cells to verify the neuroprotective effect of Salvia miltiorrhiza-containing plasma (SMP), and UPLC-Q-TOF/MS and RT-qPCR were performed to demonstrate the anti-AD activity of M308 from SMP. Results revealed that SMP could enhance cell viability and level of acetylcholine. AO/EB staining and Mitochondrial membrane potential (MMP) analysis showed that SMP significantly suppressed apoptosis, which may be due to anti-oxidative stress activity. Moreover, the effects of M308 and SMP on expressions of PSEN1, DRD2, and APP mRNA were consistent, and M308 can significantly reverse the expression of PSEN1 and DRD2 mRNA in H2O2-treated PC12 cells. The strategy based on the network could be employed to identify anti-AD compounds from Chinese herbs. Notably, M308 stands out as a promising anti-AD candidate for development.


Subject(s)
Alzheimer Disease , Drugs, Chinese Herbal , Neurodegenerative Diseases , Salvia miltiorrhiza , Alzheimer Disease/drug therapy , Animals , Drugs, Chinese Herbal/chemistry , Hydrogen Peroxide , Molecular Docking Simulation , Neurodegenerative Diseases/drug therapy , Phytochemicals/pharmacology , RNA, Messenger , Rats , Salvia miltiorrhiza/chemistry
11.
PeerJ ; 10: e12726, 2022.
Article in English | MEDLINE | ID: mdl-35111394

ABSTRACT

The roots of Salvia miltiorrhiza Bunge. are commonly used in the treatment of cardiovascular diseases, and tanshinones and salvianolic acids are its main active ingredients. However, the composition and content of active ingredients of S. miltiorrhiza planted in different regions of the soil environment are also quite different, which adds new difficulties to the large-scale and standardization of artificial cultivation. Therefore, in this study, we measured the active ingredients in the roots of S. miltiorrhiza and the contents of rhizosphere soil elements from 25 production areas in eight provinces in China, and used the data to develop a prediction model based on BP (back propagation) neural network. The results showed that the active ingredients had different degrees of correlation with soil macronutrients and trace elements, the prediction model had the best performance (MSE = 0.0203, 0.0164; R2 = 0.93, 0.94). The artificial neural network model was shown to be a method that can be used to screen the suitable cultivation sites and proper fertilization. It can also be used to optimize the fertilizer application at specific sites. It also suggested that soil testing formula fertilization should be carried out for medicinal plants like S. miltiorrhiza, which is grown in multiple origins, rather than promoting the use of "special fertilizer" on a large scale. Therefore, the model is helpful for efficient, rational, and scientific guidance of fertilization management in the cultivation of S. miltiorrhiza.


Subject(s)
Salvia miltiorrhiza , Trace Elements , Soil , Fertilizers , Plant Roots
12.
J Agric Food Chem ; 70(8): 2616-2629, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35167751

ABSTRACT

Evidence suggests that plant-derived nanovesicles may play a significant role in human health. Tartary buckwheat has several physiological activities; however, its underlying health-promoting mechanism remains unclear. In this study, first, Tartary buckwheat-derived nanovesicles (TBDNs) were collected, their structures were analyzed, and microRNA sequencing was performed. Next, target prediction and functional verification were conducted. Finally, the effects of TBDNs on gut microbiota and short-chain fatty acid levels were evaluated. The average size of TBDNs was 141.8 nm diameter. Through the sequencing analyses, 129 microRNAs, including 11 novel microRNAs were identified. Target gene prediction showed that some microRNAs could target functional genes in Escherichia coli and Lactobacillus rhamnosus-related physiological processes. TBDNs significantly promoted the growth of E. coli and L. rhamnosus, enhanced the diversity of fecal microorganisms and increased the short-chain fatty acid levels. These findings provided a new nutritional perspective for Tartary buckwheat and were conducive to promote the development and utilization of Tartary buckwheat.


Subject(s)
Fagopyrum , Gastrointestinal Microbiome , Escherichia coli/genetics , Fagopyrum/genetics , Fatty Acids, Volatile/pharmacology , Humans
13.
Front Plant Sci ; 13: 1092610, 2022.
Article in English | MEDLINE | ID: mdl-36704174

ABSTRACT

Background: Nitrogen(N), phosphorus(P), and potassium(K) are essential elements that are highly deficient during plant growth. Existing diagnostic methods are not suitable for rapid diagnosis of large-scale planting areas. Near-ground remote sensing technology based on unmanned aerial vehicle (UAV) and sensor is often applied to crop growth condition monitoring and agricultural management. It has been proven to be used for monitoring plant N, P, and K content. However, its integrated diagnostic model has been less studied. Methods: In this study, we collected UAV multispectral images of Ligusticum chuanxiong Hort. in different periods of nutritional stress and constructed recognition models with different heights and algorithms. The optimal model variables were selected, and the effects of different sampling heights and modeling algorithms on the model efficiency under the time span were evaluated. At the same time, we evaluated the timeliness of the model based on leaf element content determination and SPAD. It was also validated in field crop production. Results: The results showed that the LR algorithm's model had optimal performance at all periods and flight altitudes. The optimal accuracy of N-deficient plants identification reached 100%, P/K-deficient plants reached 92.4%, and normal plants reached 91.7%. The results of UAV multispectral diagnosis, chemical diagnosis, and SPAD value diagnosis were consistent in the diagnosis of N deficiency, and the diagnosis of P and K deficiency was slightly lagging behind that of chemical diagnosis. Conclusions: This research uses UAV remote sensing technology to establish an efficient, fast, and timely nutritional diagnosis method for L. Chuanxiong, which is applied in production. Meanwhile, the standardized production of medicinal plant resources provides new solutions.

14.
PeerJ ; 9: e12300, 2021.
Article in English | MEDLINE | ID: mdl-34721983

ABSTRACT

Salvia miltiorrhiza (Labiatae) is an important medicinal plant in traditional Chinese medicine. Tanshinones are one of the main active components of S. miltiorrhiza. It has been found that the intraspecific variation of S. miltiorrhiza is relatively large and the content of tanshinones in its roots of different varieties is also relatively different. To investigate the molecular mechanisms that responsible for the differences among these varieties, the tanshinones content was determined and comparative transcriptomics analysis was carried out during the tanshinones accumulation stage. A total of 52,216 unigenes were obtained from the transcriptome by RNA sequencing among which 23,369 genes were differentially expressed among different varieties, and 2,016 genes including 18 diterpenoid biosynthesis-related genes were differentially expressed during the tanshinones accumulation stage. Functional categorization of the differentially expressed genes (DEGs) among these varieties revealed that the pathway related to photosynthesis, oxidative phosphorylation, secondary metabolite biosynthesis, diterpenoid biosynthesis, terpenoid backbone biosynthesis, sesquiterpenoid and triterpenoid biosynthesis are the most differentially regulated processes in these varieties. The six tanshinone components in these varieties showed different dynamic changes in tanshinone accumulation stage. In addition, combined with the analysis of the dynamic changes, 277 DEGs (including one dehydrogenase, three CYP450 and 24 transcription factors belonging to 12 transcription factor families) related to the accumulation of tanshinones components were obtained. Furthermore, the KEGG pathway enrichment analysis of these 277 DEGs suggested that there might be an interconnection between the primary metabolic processes, signaling processes and the accumulation of tanshinones components. This study expands the vision of intraspecific variation and gene regulation mechanism of secondary metabolite biosynthesis pathways in medicinal plants from the "omics" perspective.

15.
PeerJ ; 9: e11749, 2021.
Article in English | MEDLINE | ID: mdl-34285837

ABSTRACT

The root-associated actinobacteria play important roles in plant growth, nutrient use, and disease resistance due to their functional diversity. Salvia miltiorrhiza is a critical medicinal plant in China. The root actinobacterial community structure has been studied; however, the functions of root-associated actinobacteria of S. miltiorrhiza have not been elucidated. This study aimed to decipher the diversity and function of the culturable root-associated actinobacteria in plant growth using culture-dependent technology and culturable microbe metagenomes. We isolated 369 strains from the root-associated actinobacteria, belonging to four genera, among which Streptomyces was dominant. Besides, the functional prediction revealed some pathways related to plant growth, nitrogen and phosphorus metabolism, and antagonistic pathogens. We systematically described the diversity and functions of the culturable root-associated actinobacteria community. Our results demonstrated that the culturable root-associated actinobacteria of S. miltiorrhiza have rich functionalities, explaining the possible contribution of culturable root-associated actinobacteria to S. miltiorrhiza's growth and development. This study provides new insights into understanding the function of the culturable root-associated actinobacteria and can be used as a knowledge base for plant growth promoters and biological control agent development in agriculture.

16.
Food Sci Nutr ; 9(6): 2853-2861, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34136153

ABSTRACT

Fritillaria cirrhosa D. Don is the major source plants of traditional Chinese medicine Fritillariae Cirrhosae Bulbus (FCB). Domestication, introduction, and cultivation is an important strategy to alleviate the shortage of endangered medicinal plants of F. cirrhosa. However, until now, the yield and quality changes of FCB in different harvest periods and drying treatments after harvest were not well understood. Therefore, in this paper, we investigated the yield and quality of cultivated F. cirrhosa at different harvest periods and postharvest processing methods. The results showed that dry weight per bulb ranged from 0.8913 to 1.4681 g and reached the highest at the wilting stage. The soluble sugar content ranged from 0.075% to 0.127% and reached the highest at the wilting stage. The content of total alkaloids ranged from 0.088% to 0.218% and reached the highest at the late-flowering stage. The contents of peimisine, sipeimine, peimine, and peiminine were 0.01178%-0.02615%, 0%-0.01713%, 0%-0.00745%, and 0%-0.00621% and reached the highest at the late-flowering period, wilting period, young fruit period, and initial flowering period, respectively. For the two different postharvest processing methods, the contents of total alkaloids and the 16 main characteristic peaks did not exhibit significant differences. Still, the alkaloid contents of the oven drying after washing were slightly higher than the sun drying. In conclusion, the best harvest period is the wilting period of F. cirrhosa, and oven drying after washing is more beneficial to ensure the quality of FCB and improve productivity.

17.
Front Plant Sci ; 12: 617892, 2021.
Article in English | MEDLINE | ID: mdl-33603763

ABSTRACT

Arbuscular mycorrhiza fungi (AMFs) are a group of soil-dwelling fungi that form symbiotic associations with plants, to mediate the secondary metabolism and production of active ingredients in aromatic and medicinal plants. Currently, there is little research on Salvia miltiorrhiza Bge. inoculation with native AMFs and the concomitant effects on growth and secondary metabolites. In this study, S. miltiorrhiza was treated with eight AMFs, i.e., Glomus formosanum; Gl. tenebrosum; Septoglomus constrictum; Funneliformis geosporum; Rhizophagus manihotis; Ambispora gerdemanii; Acaulospora laevis; Ac. tuberculata, to investigate the influence of AMF inoculation on biomass and secondary production under greenhouse conditions in S. miltiorrhiza roots. The results showed that mycorrhiza formation rates were between 54.83 and 86.10%. Apart from Ac. laevis and Gl. tenebrosum treatment, the roots biomass of the other treatment groups was effectively increased, and the fresh and dry weight of the plant inoculated with Fu. geosporum were increased by 86.76 and 86.95%, respectively. Specifically, AMF treatments also impacted on phenolic acids production; inoculation with both Fu. geosporum or Ac. laevis significantly reduced total phenolic acids, whereas the other treatments effectively increased these levels, of which Gl. formosanum generated significant levels. Most AMF-plant symbiotic experiments facilitated phenolic acid accumulation in the secondary metabolites of S. miltiorrhiza (except Ac. laevis). This study showed that most native AMFs inoculation with S. miltiorrhiza promoted roots growth and increased secondary metabolites production (especially phenolic acids). Going forward, inoculation of native AMF is a promising method to improve the quality and yield of S. miltiorrhiza and should be considered during production.

18.
Article in English | MEDLINE | ID: mdl-33273948

ABSTRACT

Fritillariae Cirrhosae Bulbus (known as chuanbeimu in Chinese, FCB) is a famous folk medicine which has been widely used to relieve cough and eliminate phlegm for thousands of years in China. The medicine originates from dried bulbs of six species of Fritillaria which are distributed in the temperate zone of the Northern Hemisphere. Increasing attention has been paid to FCB because of its excellent medicinal value such as being antitussive, expectorant, analgesic, anticancer, anti-inflammatory, and antioxidative. During the past years, a large number of research studies have been conducted to investigate the phytochemistry, pharmacology, and pharmacokinetics of FCB. A range of compounds have been isolated and identified from FCB, including alkaloids, saponins, nucleosides, organic acids, terpenoids, and sterols. Among them, alkaloids as the main active ingredient have been illustrated to exert significant therapeutic effects on many diseases such as cancer, acute lung injury, chronic obstructive pulmonary disease, asthma, Parkinson's disease, and diabetes. Due to the excellent medical value and low toxicity, FCB has a huge market all over the world and triggers a growing enthusiasm among researchers. However, there is still a lack of systematic review. Hence, in this work, we reviewed the FCB-based articles published in Sci Finder, Web of Science, PubMed, Google Scholar, CNKI, and other databases in the recent years. The traditional uses, sources, phytochemistry, pharmacology, pharmacokinetics, and toxicity of FCB were discussed in the review, which aims to provide a reference for further development and utilization of FCB.

19.
Fitoterapia ; 145: 104633, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32445662

ABSTRACT

As a natural quinone compound, the medicinal value of cryptotanshinone (CT) has received increasing attentions, but there is no systematic literature review that describes the pharmacological activity of CT. This paper reviewed the pharmacology researches of CT, with a primary focus on its anti-tumor activity. We also discussed the underlying molecular mechanisms, and proposed future outlooks. In addition to anti-tumor activity, CT was found to have anti-inflammatory, neuroprotective, cardioprotective, visceral protective, anti-metabolic disorders and other abilities. Furthermore, the potential molecular mechanisms contributing to the anti-tumor effect of CT likely involve the following aspects: the induction of apoptosis, targeting of ER and AR, reversion of MDR, combined pharmacotherapy, and the inhibition of cell proliferation, migration, and invasion. We also found that different pharmacological effects involved various signaling pathways. Among them, STAT3-related signaling pathways played a vital role in the CT-mediated induction of tumor cell apoptosis and proliferation, while NF-κB signal pathway also was essential for inhibition of inflammation by CT. Furthermore, CT could significantly enhance the activities of several anticancer drugs and reverse their resistances in tumors. Therefore, we proposed suggestions for future studies of CT, including enhancing anti-tumor activity by targeting STAT3-related receptors, targeting NF-κB-related pathways to inhibit inflammatory responses, enhancing anti-tumor efficacy by combining with anti-tumor drugs, and further studying the dose-effect relationship to ensure safer and more effective applications of CT.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Phenanthrenes/pharmacology , Signal Transduction/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/drug effects , Humans , Inflammation , NF-kappa B/metabolism , Protective Agents/pharmacology , STAT3 Transcription Factor
20.
Zhongguo Zhong Yao Za Zhi ; 45(2): 290-302, 2020 Jan.
Article in Chinese | MEDLINE | ID: mdl-32237311

ABSTRACT

Microecology was directly or indirectly involved in the growth and development, metabolism process, and component accumulation of traditional Chinese medicine(TCM) in various ways, which affected the formation and changes of the geoherbalism of TCM. It was one of the main tasks of traditional Chinese medical microecology(TCMM) to reveal the relationship among microecological structure and its change rule and the quality effect of TCM. The heterogeneity of soil environment caused by geographical and climatic factors, as well as the discreteness limitation caused by isolation factors such as distance and host selection, were the main causes of the differentiation of microecological geography of TCM. The microecology of TCM had important influences and contributions on the distinctive origin and quality of Dao-di herbs, which was mainly reflected in the formation of excellent germplasm(including disease and insect resistance, drought resistance, salt resistance, cold resistance, etc.), the increase of yield, the formation of medicinal parts, the metabolism and accumulation of effective components, the time limit of harvesting, and the toxicity, increasing efficiency or reducing toxicity of TCM in the processing, the changes of product efficiency after introduction, and the authenticity of fungus medicine. With the vigorous development of metabonomics and modern information technology, the following aspects would become the future research trends, including the microecologically mediated biogenic pathway of chemical components, the metabolic synthesis reactor of TCM based on the microecological quantitative effect relationship, the cultivation of genuine Chinese medicine based on reconstruction of microecological structure, the origin identification barcode traceability technology, and the toxicity reduction and efficiency enhancement technology of TCM based on the microecological.


Subject(s)
Drugs, Chinese Herbal , Geography , Soil/chemistry , Climate , Medicine, Chinese Traditional , Metabolomics
SELECTION OF CITATIONS
SEARCH DETAIL