Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Cells ; 13(5)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38474335

ABSTRACT

Hydrogen sulfide (H2S) has been recently recognized as an important gasotransmitter with cardioprotections, and iron is vital for various cellular activities. This study explored the regulatory role of H2S on iron metabolism and mitochondrial functions in cultured rat cardiac cells. Rotenone, a mitochondrial complex I inhibitor, was used for establishing an in vitro model of ischemic cell damage. It was first found that rotenone induced oxidative stress and lipid peroxidation and decreased mitochondrial membrane potential and ATP generation, eventually causing cell death. The supplement of H2S at a physiologically relevant concentration protected from rotenone-induced ferroptotic cell death by reducing oxidative stress and mitochondrial damage, maintaining GPx4 expression and intracellular iron level. Deferiprone, an iron chelator, would also protect from rotenone-induced ferroptosis. Further studies demonstrated that H2S inhibited ABCB8-mediated iron efflux from mitochondria to cytosol and promoted NFS1-mediated Fe-S cluster biogenesis. It is also found that rotenone stimulated iron-dependent H2S generation. These results indicate that H2S would protect cardiac cells from ischemic damage through preserving mitochondrial functions and intracellular Fe-S cluster homeostasis.


Subject(s)
Ferroptosis , Rotenone , Rats , Animals , Rotenone/pharmacology , Mitochondria/metabolism , Cell Line, Tumor , Iron/metabolism
2.
J Cell Physiol ; 237(1): 763-773, 2022 01.
Article in English | MEDLINE | ID: mdl-34346059

ABSTRACT

Hydrogen sulfide (H2 S) is a gasotransmitter that regulates both physiological and pathophysiological processes in mammalian cells. Recent studies have demonstrated that H2 S promotes aerobic energy production in the mitochondria in response to hypoxia, but its effect on anaerobic energy production has yet to be established. Glycolysis is the anaerobic process by which ATP is produced through the metabolism of glucose. Mammalian red blood cells (RBCs) extrude mitochondria and nucleus during erythropoiesis. These cells would serve as a unique model to observe the effect of H2 S on glycolysis-mediated energy production. The purpose of this study was to determine the effect of H2 S on glycolysis-mediated energy production in mitochondria-free mouse RBCs. Western blot analysis showed that the only H2 S-generating enzyme expressed in mouse RBCs is 3-mercaptopyruvate sulfurtransferase (MST). Supplement of the substrate for MST stimulated, but the inhibition of the same suppressed, the endogenous production of H2 S. Both exogenously administered H2 S salt and MST-derived endogenous H2 S stimulated glycolysis-mediated ATP production. The effect of NaHS on ATP levels was not affected by oxygenation status. On the contrary, hypoxia increased intracellular H2 S levels and MST activity in mouse RBCs. The mitochondria-targeted H2 S donor, AP39, did not affect ATP levels of mouse RBCs. NaHS at low concentrations (3-100 µM) increased ATP levels and decreased cell viability after 3 days of incubation in vitro. Higher NaHS concentrations (300-1000 µM) lowered ATP levels, but prolonged cell viability. H2 S may offer a cytoprotective effect in mammalian RBCs to maintain oxygen-independent energy production.


Subject(s)
Hydrogen Sulfide , Adenosine Triphosphate/metabolism , Animals , Erythrocytes/metabolism , Glycolysis , Hydrogen Sulfide/metabolism , Hydrogen Sulfide/pharmacology , Hypoxia , Mammals/metabolism , Mice
3.
Toxicol Appl Pharmacol ; 426: 115642, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34242567

ABSTRACT

Disulfiram (DSF), a sulfur-containing compound, has been used to treat chronic alcoholism and cancer for decades by inactivating aldehyde dehydrogenase (ALDH). Hydrogen sulfide (H2S) is a new gasotransmitter and regulates various cellular functions by S-sulfhydrating cysteine in the target proteins. H2S exhibits similar properties to DSF in the sensitization of cancer cells. The interaction of DSF and H2S on ALDH activity and liver cancer cell survival are not clear. Here it was demonstrated that DSF facilitated H2S release from thiol-containing compounds, and DSF and H2S were both capable of regulating ALDH through inhibition of gene expression and enzymatic activity. The supplement of H2S sensitized human liver cancer cells (HepG2) to DSF-inhibited cell viability. The expression of cystathionine gamma-lyase (a major H2S-generating enzyme) was lower but ALDH was higher in mouse liver cancer stem cells (Dt81Hepa1-6) in comparison with their parental cells (Hepa1-6), and H2S was able to inhibit liver cancer stem cell adhesion. In conclusion, these data point to the potential of combining DSF and H2S for inhibition of cancer cell growth and tumor development by targeting ALDH.


Subject(s)
Acetaldehyde Dehydrogenase Inhibitors/pharmacology , Alcohol Deterrents/pharmacology , Aldehyde Dehydrogenase/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Disulfiram/pharmacology , Hydrogen Sulfide/metabolism , Liver Neoplasms/drug therapy , Aldehyde Dehydrogenase/genetics , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Copper/pharmacology , Humans , Hydrogen-Ion Concentration , Liver/drug effects , Liver/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Mice , Temperature
4.
Cardiovasc Drugs Ther ; 35(1): 73-85, 2021 02.
Article in English | MEDLINE | ID: mdl-32918657

ABSTRACT

PURPOSE: To determine the mediation of spermine on energy metabolism disorder and diabetic cardiomyopathy (DCM) development as well as the underlying mechanisms. METHODS: An in vitro model of DCM was established by incubating primary cultured neonatal rat cardiomyocytes with high glucose (HG). Spermine content was assessed by RP-HPLC. The protein levels were detected by western blot. Mitochondrial functions were analyzed using the respiratory chain complex assay kit and immunofluorescence staining. RESULTS: The endogenous content of spermine was decreased in the HG group, and the protein levels of ornithine decarboxylase, respiratory chain complex (I-V), mitochondrial fusion-related protein (Mfn1, Mfn2), Cx43, N-cadherin, CaSR, and ß-catenin (in cytomembrane) were also down-regulated by HG. In contrast, the protein levels of spermine-N1-acetyltransferase, gp78, Fis1, Drp1, and ß-catenin were up-regulated by HG. Meanwhile, we observed that HG increased ubiquitination levels of Mfn1, Mfn2, and Cx43, decreased membrane potential (ΔΨm), and the opening of mitochondrial permeability transport pore (mPTP) followed by intracellular ATP leakage. The supplement of spermine or siRNA-mediated knockdown of gp78 significantly alleviated the detrimental effects of HG, while downregulation of CaSR aggravated the development of DCM. We further confirmed that the lower level of spermine by HG activates the gp78-ubiquitin-proteasome pathway via downregulation of CaSR protein level, which in turn damages mitochondrial gap junction intercellular communication and leads to reduced ATP level. CONCLUSION: The protective role of spermine on energy metabolism disorder is based on higher CaSR protein level and lower gp78 activation, pointing to the possibility that spermine can be a target for the prevention and treatment of DCM.


Subject(s)
Diabetic Cardiomyopathies/physiopathology , Energy Metabolism/drug effects , Mitochondria/metabolism , Myocytes, Cardiac/drug effects , Spermine/pharmacology , Animals , Cell Culture Techniques , Glucose/pharmacology , Proteasome Endopeptidase Complex/metabolism , Rats , Rats, Wistar , Receptors, Calcium-Sensing/biosynthesis , Ubiquitin/metabolism
5.
Toxicol Appl Pharmacol ; 356: 25-35, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30055191

ABSTRACT

Nickel as a heavy metal is known to bring threat to human health, and nickel exposure is associated with changes in fibroblast activation which may contribute to its fibrotic properties. H2S has recently emerged as an important gasotransmitter involved in numerous cellular signal transduction and pathophysiological responses. Interaction of nickel and H2S on fibroblast cell activation has not been studied so far. Here, we showed that a lower dose of nickel (200 µM) induced the activation of human fibroblast cells, as evidenced by increased cell growth, migration and higher expressions of α-smooth muscle actin (αSMA) and fibronectin, while high dose of nickel (1 mM) inhibited cell viability. Nickel reduced intracellular thiol contents and stimulated oxidative stress. Nickel also repressed the mRNA and protein expression of cystathionine gamma-lyase (CSE, a H2S-generating gene) and blocked the endogenous production of H2S. Exogenously applied NaHS (a H2S donor) had no effect on nickel-induced cell viability but significantly attenuated nickel-stimulated cell migration and the expression of αSMA and fibronectin. In contrast, CSE deficiency worsened nickel-induced αSMA expression. Moreover, H2S incubation reversed nickel-stimulated TGFß1/SMAD1 signal and blocked TGFß1-initiated expressions of αSMA and fibronectin. Nickel inhibited the interaction of Sp1 with CSE promoter but strengthened the binding of Sp1 with TGFß1 promoter, which was reversed by exogenously applied NaHS. These data reveal that H2S protects from nickel-stimulated fibroblast activation and CSE/H2S system can be a potential target for the treatment of tissue fibrosis induced by nickel.


Subject(s)
Fibroblasts/drug effects , Hydrogen Sulfide/pharmacology , Nickel/toxicity , Smad1 Protein/drug effects , Sp1 Transcription Factor/drug effects , Transforming Growth Factor beta1/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Cystathionine gamma-Lyase/antagonists & inhibitors , Fibronectins/biosynthesis , Fibronectins/genetics , Humans , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Sulfhydryl Compounds/metabolism , Zinc/metabolism
6.
Biochem Pharmacol ; 149: 143-152, 2018 03.
Article in English | MEDLINE | ID: mdl-29248598

ABSTRACT

Hydrogen sulfide (H2S) is mostly produced by cystathionine-gamma-lyase (CSE) in vascular system and it inhibits the proliferation of vascular smooth muscle cells (SMCs). Insulin-like growth factor-1 (IGF-1), via its receptor (IGF-1R), exerts multiple physiological and pathophysiological effects on the vasculature, including stimulating SMC proliferation and migration, and inhibiting SMC apoptosis. Since H2S and IGF-1/IGF-1R have opposite effects on SMC proliferation, it becomes imperative to better understand the interaction of these two signaling mechanisms on SMC proliferation. SMCs isolated from small mesenteric arteries of CSE knockout (KO) and wild-type (WT) mice were used in the present study. The effects of IGF-1 and H2S on SMC proliferation were evaluated with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and bromodeoxyuridine (BrdU) assays. Protein expression was determined by western blot, and H2S-induced protein S-sulfhydration was assessed with a modified biotin switch assay. We found that IGF-1 dose-dependently increased the proliferation of both WT-SMCs and KO-SMCs, and this effect was more significant in KO-SMCs. Supplement of sodium hydrosulfide (NaHS) inhibited IGF-1-induced cell proliferation, while this effect was abolished by blocking IGF-1/IGF-1R signaling with picropodophyllin (PPP) or knocking out of the expression of IGF-1R. H2S significantly down-regulates the expression of IGF-1R, stimulates IGF-1R S-sulfhydration, and attenuates the binding of IGF-1 with IGF-1R. This study provides novel insight on the involvement of IGF-1/IGF-1R in H2S-inhibited SMC proliferation and suggests H2S-based innovative treatment strategies for proliferative cardiovascular diseases such as atherosclerosis.


Subject(s)
Cell Proliferation/drug effects , Hydrogen Sulfide/pharmacology , Insulin-Like Growth Factor I/pharmacology , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Receptor, IGF Type 1/metabolism , Animals , Cells, Cultured , Cystathionine gamma-Lyase/genetics , Cystathionine gamma-Lyase/metabolism , Gene Expression Regulation/drug effects , Hydrogen Sulfide/metabolism , Insulin-Like Growth Factor I/metabolism , Mice , Mice, Knockout , Podophyllotoxin/analogs & derivatives , RNA/genetics , RNA/metabolism , Receptor, IGF Type 1/genetics
7.
Free Radic Biol Med ; 50(10): 1280-7, 2011 May 15.
Article in English | MEDLINE | ID: mdl-21310231

ABSTRACT

This study examined the important relationship between cystathionine γ-lyase (CSE) functionality and cysteine supply for normal growth and life span. Mice with a targeted deletion of the CSE gene (CSE-KO) were fed a cysteine-limited diet and their growth and survival patterns as well as levels of cysteine, homocysteine, glutathione, and hydrogen sulfide (H2S) were measured. CSE-KO mice fed a cysteine-limited diet exhibited growth retardation; decreased levels of cysteine, glutathione, and H2S; and increased plasma homocysteine level. However, histological examinations of liver did not reveal any abnormality and plasma levels of aspartate aminotransferase, alanine aminotransferase, and albumin were normal in these animals. No CSE-KO mice survived after 12 weeks of feeding with the cysteine-limited diet. Supplementation of H2S to the CSE-KO mice failed to reverse the aforementioned abnormalities. On the other hand, supplementation of cysteine in the drinking water of the CSE-KO mice significantly increased plasma cysteine and glutathione levels. This eventually led to an increase in body weight and rescued the animals from death. In conclusion, CSE is critical for cysteine biosynthesis through the transsulfuration pathway and the combination of CSE deficiency and lack of dietary cysteine supply would threaten life sustainability.


Subject(s)
Cystathionine gamma-Lyase/metabolism , Cysteine/metabolism , Dietary Supplements , Animals , Body Weight , Cystathionine gamma-Lyase/deficiency , Cystathionine gamma-Lyase/genetics , Cysteine/administration & dosage , Cysteine/blood , Hydrogen Sulfide/metabolism , Male , Mice , Mice, Knockout
8.
J Biol Chem ; 279(47): 49199-205, 2004 Nov 19.
Article in English | MEDLINE | ID: mdl-15347670

ABSTRACT

Cystathionine gamma-lyase (CSE) is a key enzyme in the trans-sulfuration pathway. CSE uses L-cysteine as a substrate to produce hydrogen sulfide (H2S). The CSE/H2S system has been shown to play an important role in regulating cellular functions in different systems. In the present study, we used CSE stably overexpressed HEK-293 cells to explore the effect of the CSE/H2S system on cell growth and proliferation. The overexpression of CSE resulted in increases in CSE mRNA levels, CSE proteins, and intracellular H2S production rates, as well as the inhibition of cell proliferation and DNA synthesis. These effects were accompanied by a sustained ERK activation and up-regulation of the cyclin-dependent kinase inhibitor p21Cip/WAK-1. Blocking the action of ERK with U0126 inhibited the induction of p21Cip/WAK-1, suggesting that ERK activation functions upstream of p21Cip/WAK-1 activation to initiate the CSE overexpression-induced cell growth inhibition. The antiproliferative effect of CSE is likely mediated by endogenously produced H2S because the H2S scavenger methemoglobin (10 microm) significantly decreased the H2S production rate and reversed the antiproliferative effect afforded by CSE. Exogenous H2S (100 microm) also inhibited cell proliferation. However, the other CSE-catalyzed products, ammonium and pyruvate, failed to inhibit cell proliferation. Methemoglobin also abolished the inhibitory effect of exogenous H2S on cell proliferation. Moreover, exogenous H2S induced a sustained ERK and p21Cip/WAK-1 activation. These findings support the hypothesis that endogenously produced H2S may play a fundamental role in cell proliferation and survival.


Subject(s)
Cell Cycle Proteins/metabolism , Cystathionine gamma-Lyase/biosynthesis , Hydrogen Sulfide/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Blotting, Western , Butadienes/pharmacology , Cell Line , Cell Proliferation , Cell Survival , Cloning, Molecular , Cyclin-Dependent Kinase Inhibitor p21 , Cysteine/chemistry , DNA/metabolism , DNA, Complementary/metabolism , Dose-Response Relationship, Drug , Enzyme Activation , Enzyme Inhibitors/pharmacology , Humans , Methemoglobin/pharmacology , Nitriles/pharmacology , Open Reading Frames , Phosphorylation , Plasmids/metabolism , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Time Factors , Transcription, Genetic , Transfection , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL