Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Affiliation country
Publication year range
1.
Ying Yong Sheng Tai Xue Bao ; 35(3): 705-712, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38646758

ABSTRACT

The composition and stability of soil aggregates are important indicators for measuring soil quality, which would be affected by land use changes. Taking wetlands with different returning years (2 and 15 years) in the Yellow River Delta as the research object, paddy fields and natural wetlands as control, we analyzed the changes in soil physicochemical properties and soil aggregate composition. The results showed that soil water content, total organic carbon, dissolved organic carbon and total phosphorus of the returning soil (0-40 cm) showed an overall increasing trend with returning period, while soil pH and bulk density was in adverse. There was no significant change in clay content, electrical conductivity, and total nitrogen content. The contents of macro-aggregates and micro-aggregates showed overall increasing and decreasing trend with returning period, respectively. The stability of aggregates in the topsoil (0-10 cm) increased with returning years. Geometric mean diameter and mean weight diameter increased by 8.9% and 40.4% in the 15th year of returning, respectively, while the mass proportion of >2.5 mm fraction decreased by 10.5%. There was no effect of returning on aggregates in subsoil (10-40 cm). Our results indicated that returning paddy field to wetland in the Yellow River Delta would play a positive role in improving soil structure and aggregate stability.


Subject(s)
Oryza , Rivers , Soil , Wetlands , Soil/chemistry , China , Rivers/chemistry , Oryza/growth & development , Oryza/chemistry , Environmental Monitoring , Agriculture/methods , Phosphorus/analysis , Phosphorus/chemistry , Carbon/analysis , Carbon/chemistry
2.
Huan Jing Ke Xue ; 43(6): 3241-3252, 2022 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-35686794

ABSTRACT

To clarify the distribution characteristics and the ecological stoichiometric characteristics of nutrient elements in soils under different vegetation types, four typical natural wetlands, i.e., Phragmites australis wetland, Tamarix chinensis wetland, Suaeda salsa wetland, and Tidal flat wetland, as well as Gossypium spp. fields that were reclaimed from natural wetlands, were selected as study sites in the Yellow River Delta, and comparisons between the agricultural reclamation land and natural wetlands were conducted. The results showed that the soil total organic carbon (TOC) and total nitrogen (TN) contents in the natural wetlands were as follows:P. australis wetland and T. chinensis wetland>S. salsa wetland>Tidal flat, and the contents of TOC and TN were significantly negatively related to electrical conductivity (EC) and pH values (P<0.05). The contents of TOC, TN, and total phosphorus (TP) in Gossypium spp. fields were significantly higher than those in natural wetlands (P<0.05), especially the contents of nitrate nitrogen (NO3--N) in Gossypium spp. fields, which were 9.4-11.4 times that of natural wetlands. However, no significant correlations between TOC, TN, and TP and EC and pH values (P>0.05) were observed in Gossypium spp. fields. The results of correlation analysis showed that the C/N of natural wetlands were mainly controlled by the contents of TN (P<0.05), and the C/N of the Gossypium spp. fields were significantly lower than those of natural wetlands (P<0.05). The soil C/P and N/P of natural wetlands and Gossypium spp. fields in the Yellow River Delta were low, and the variation trends were consistent with those of soil TOC and TN. Comparative analysis revealed, on the whole, that there were significantly different soil nutrient element contents, C/N, C/P, and N/P in Gossypium spp. fields compared to those of natural wetlands (P<0.05). The process of reclamation could significantly change the spatial distribution of nutrient elements in wetlands. Our results should be of importance in revealing the biogeochemical process of soil nutrient elements in coastal wetland and the influence of agricultural reclamation activities on the differentiation of soil nutrient elements.


Subject(s)
Soil , Wetlands , Carbon/analysis , China , Nitrogen/analysis , Nutrients/analysis , Phosphorus/analysis , Rivers/chemistry , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL