Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Appl Microbiol Biotechnol ; 108(1): 20, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38159114

ABSTRACT

Soil degradation of urban greening has caused soil fertility loss and soil organic carbon depletion. Organic mulches are made from natural origin materials, and represent a cost-effective and environment-friendly remediation method for urban greening. To reveal the effects of organic mulch on soil physicochemical characteristics and fertility, we selected a site that was covered with organic mulch for 6 years and a nearby lawn-covered site. The results showed that soil organic matter, total nitrogen, and available phosphorus levels were improved, especially at a depth of 0-20 cm. The activities of cellulase, invertase, and dehydrogenase in soil covered with organic mulch were 17.46%, 78.98%, and 283.19% higher than those under lawn, respectively. The marker genes of fermentation, aerobic respiration, methanogenesis, and methane oxidation were also enriched in the soil under organic mulch. Nitrogen cycling was generally repressed by the organic mulch, but the assimilatory nitrate and nitrite reduction processes were enhanced. The activity of alkaline phosphatase was 12.63% higher in the mulch-covered soil, and functional genes involved in phosphorus cycling were also enriched. This study presents a comprehensive investigation of the influence of organic mulch on soil microbes and provides a deeper insight into the recovery strategy for soil degradation following urban greening. KEY POINTS: • Long-term cover with organic mulches assists soil recovery from degradation • Soil physical and chemical properties were changed by organic mulches • Organic mulches enhanced genes involved in microbially mediated C and P cycling • Soil organic matter was derived from decomposition of organic mulch and carbon fixation • N cycling was repressed by mulches, except for assimilatory NO2- and NO3- reductions.


Subject(s)
Carbon , Soil , Soil/chemistry , Soil Microbiology , Nitrogen , Phosphorus
2.
Front Pharmacol ; 14: 1124607, 2023.
Article in English | MEDLINE | ID: mdl-37180713

ABSTRACT

Introduction: Phellinus igniarius (P. igniarius) (Sanghuang) is a widely used traditional Chinese medicine fungus, and its natural products have great potential for clinical application in immune enhancement. This study aimed to explore the immune-enhancing activity and underlying mechanisms of the polysaccharides and flavonoids derived from Phellinus igniarius (P. igniarius) and to provide a theoretical and experimental basis for the development of novel drugs. Methods: Wild P. igniarius YASH1 from the Loess Plateau in Yan'an region was collected, and polysaccharides and total flavonoids were extracted, isolated and identified from mycelium and sporophore. In vitro antioxidant activity was detected through the scavenging activity of hydroxyl radicals and total antioxidant capacity. Cell Counting Kit-8 and trypan blue detection kit were used to detect the effect of extract polysaccharides and flavonoids on the proliferation and phagocytosis ability of immune cells. To assess the effect of the drugs on cytokine secretion by immune cells and immune recovery in immunocompromised mice, the expression of interleukin (IL)-2, IL-6, interferon (IFN)-γ, and tumor necrosis factor (TNF)-α were examined at the cellular and animal levels. The species composition, abundance of gut microbiota and the altered content of short-chain fatty acids in the feces were analyzed to elucidate the possible mechanisms of drugs by 16S ribosomal RNA (rRNA) amplifiers sequencing and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Results: Both polysaccharides and flavonoids derived from mycelium or sporophore had antioxidant activity and may stimulate the expression and secretion of IL-2, IL-6, and IFN-γ in immune cells while inhibiting TNF-α expression and secretion and increasing IL-2, IL-6, and IFN- γ expression levels in mice. Furthermore, polysaccharides and flavonoids from mycelium and sporophore showed different effects on the metabolic response of intestinal short-chain fatty acids (SCFAs) in mice, and the use of these drugs remarkably changed the species composition and abundance of intestinal flora in mice. Discussion: Polysaccharides and flavonoids from P. igniarius YASH1 mycelium and sporophore have in vitro antioxidant activity, and they affect the promotion of cell proliferation, stimulation of IL-2, IL-6, and IFN-γ secretion, and inhibition of TNF-α expression in immune cells. Polysaccharides and flavonoids from P. igniarius YASH1 may enhance immunity in immunocompromised mice and remarkably affect the intestinal flora and content of SCFAs.

3.
Huan Jing Ke Xue ; 41(6): 2698-2705, 2020 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-32608785

ABSTRACT

The micro-environment formed by the photosynthesis of submerged plants is conducive to the formation of CaCO3-P from co-precipitation of calcium and phosphorus in water, thereby permanently removing phosphorus from water to the bottom mud and avoiding secondary pollution after plants decay. However, CaCO3-P co-precipitation shows obvious specific-differences and environmental dependencies. In the present study, two different submerged plants, Myriophyllum aquaticum and Potamogeton crispus, were used as the research objects. Two variables, inorganic phosphorus level (0, 0.2, and 2 mg·L-1) and light intensity [66 µmol·(m2·s)-1 and 110 µmol·(m2·s)-1], were set. After cultivating for a week, the plant relative growth rate, plant total phosphorus, plant ash phosphorus, and Ca-P were measured to analyze the actual ability of phosphorus accumulation and clarify the effect of plant corruption on phosphorus increase in the water body. Results revealed that under various culture conditions, the relative growth rates (RGR) of P. crispus were significantly higher than those of M. aquaticum, and RGR reached the maximum at a P level of 2 mg·L-1 and a light intensity of 66 µmol·(m2·s)-1. The addition of inorganic phosphorus significantly affected plant ash phosphorus of the two plants (P. crispus 95.681%, M. aquaticum 85.432%), and the highest value of Ca-P content in the ash phosphorus of the two submerged plants appeared at a high phosphorus level. The total phosphorus in P. crispus was lower than that in M. aquaticum under various treatments, but the total ash phosphorus and Ca-P levels were higher than those in M. aquaticum. Consequently, M. aquaticum and P. crispus can effectively accumulate phosphorus during growth. However, the actual ability of P. crispus of removing phosphorus from water by the formation of CaCO3-P was higher than that of M. aquaticum at a P level of 2 mg·L-1.


Subject(s)
Phosphorus , Potamogetonaceae , Light , Nitrogen , Saxifragales
4.
Sci Rep ; 9(1): 13435, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31530863

ABSTRACT

Sound symbolism, which is the systematic and non-arbitrary link between a word and its meaning, has been suggested to bootstrap language acquisition in infants. However, it is unclear how sound symbolism is processed in the infants' brain. To address this issue, we investigated the cortical response in 11-month-old infants in relation to sound-symbolic correspondences using near-infrared spectroscopy (NIRS). Two types of stimuli were presented: a novel visual stimulus (e.g., a round shape) followed by a novel auditory stimulus that either sound-symbolically matched (moma) or mismatched (kipi) the shape. We found a significant hemodynamic increase in the right temporal area, when the sound and the referent sound were symbolically matched, but this effect was limited to the moma stimulus. The anatomical locus corresponds to the right posterior superior temporal sulcus (rSTS), which is thought to process sound symbolism in adults. These findings suggest that prelinguistic infants have the biological basis to detect cross-modal correspondences between word sounds and visual referents.


Subject(s)
Auditory Perception/physiology , Functional Laterality , Language Development , Temporal Lobe/physiology , Acoustic Stimulation , Female , Humans , Infant , Male , Nontherapeutic Human Experimentation , Photic Stimulation , Spectroscopy, Near-Infrared , Speech Perception/physiology , Symbolism
5.
Carbohydr Polym ; 172: 322-331, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28606541

ABSTRACT

Kasugamycin is an aminoglycoside antibiotic originally isolated from Streptomyces kasugaensis, which has been widely used for the management of plant diseases. However, photo-thermal instability and low efficiency limit its application. Therefore, it is an urgent task to prevent unwanted loss of kasugamycin and ensure maximum bioactivity at target site. In this work, a novel formulation of kasugamycin that responds to different biological stimuli produced by pests was prepared using silica microcapsules crosslinked with pectin via special disulfide bonds. The results demonstrated that the silica-SS-pectin microcapsules had a high loading efficiency (20% w/w) and could effectively enhance the thermal and light stability of kasugamycin. The microcapsules displayed excellent pectinase and glutathione dual-responsive properties and the release kinetics investigated by Riger-Peppas model suggested combination of various release mechanisms. Compared with kasugamycin wettable powder, the microcapsules possessed sustained and improved antimicrobial efficacy against Erwinia carotovora. Thus, the dual-responsive microcapsules potentially have agricultural application as a controlled release system.


Subject(s)
Aminoglycosides/pharmacology , Anti-Infective Agents/pharmacology , Pectins/chemistry , Aminoglycosides/chemistry , Anti-Infective Agents/chemistry , Capsules , Drug Carriers , Pectobacterium carotovorum/drug effects , Plant Diseases/prevention & control , Silicon Dioxide
6.
Zhongguo Zhen Jiu ; 34(5): 465-8, 2014 May.
Article in Chinese | MEDLINE | ID: mdl-25022120

ABSTRACT

OBJECTIVE: To compare the differences in the efficacy on distant version of naked eye in the patients of juvenile myopia between rotating manipulation and lifting-thrusting manipulation of acupuncture. METHODS: One hundred and twenty cases (240 eyes) were randomized into a rotating manipulation group and a lifting-thrusting manipulation group, 60 cases (120 eyes) in each group. Additionally, a corrective lenses group, 60 cases (120 eyes), was set up as the control. In both manipulation groups, Cuanzhu (BL 2),Yuyao (EX-HN 4), Sizhukong (TE 23), Taiyang (EX-HN 5), Fengchi (GB 20), Zusanli (ST 36), Guangming (GB 37) and Sanyinjiao (SP 6) were punctured, but stimulated with rotating manipulation and lifting-thrusting manipulation respectively three times per week, 10 times as a treatment session and totally one session was required. In the corrective lenses group, the glasses were applied at daytime. The clinical efficacy and the changes in distant vision of naked eye before and after treatment were compared among the three groups. RESULTS: The total effective rate was 87.5% (105/120) in the rotating manipulation group, which was better than 69.2% (83/120) in the lifting-thrusting manipulation group (P < 0.05). The distant vision of naked eye was improved apparently in the rotating manipulation group and the lifting-thrusting manipulation group after treatment (both P < 0.05). But it was not improved in the corrective lenses group (P > 0.05). The distant vision of naked eye was improved more apparently after treatment in the rotating manipulation group as compared with that in the lifting-thrusting manipulation group (0.75 +/- 0.23 vs 0.68 +/- 0.24, P < 0.05). For 96 cases (192 eyes) with acupuncture treatment, in 3-month follow-up, 87.0% (167/192) of the cases maintained the stable vision as the original level and 13.0% (25/192) of them were reduced in the vision In the acupuncture groups, it was found that the improvement of distant vision of naked eye was more obvious after treatment with younger age, better basic vision and shorter duration of sickness (all P < 0.05). CONCLUSION: Acupuncture achieves the positive and sustainable clinical effect on juvenile myopia, and the results of rotating manipulation are superior to that of lifting-thrusting manipulation. Age, basic vision and duration of sickness impact the clinical efficacy.


Subject(s)
Acupuncture Therapy , Myopia/therapy , Acupuncture Points , Acupuncture Therapy/instrumentation , Acupuncture Therapy/methods , Adolescent , Child , Female , Humans , Young Adult
7.
Mol Brain ; 5: 18, 2012 May 30.
Article in English | MEDLINE | ID: mdl-22647647

ABSTRACT

BACKGROUND: Spinal glia, particularly microglia and astrocytes, are of the utmost importance in the development and maintenance of chronic pain. A recent study from our laboratory revealed that gabapentin, a recommended first-line treatment for multiple neuropathic conditions, could also efficiently antagonize thermal hyperalgesia evoked by complete Freund's adjuvant (CFA)-induced monoarthritis (MA). In the present study, we investigated whether the spinal glia are involved in the anti-hyperalgesic effect of gabapentin and how this event occurs. RESULTS: Unilateral intra-articular injection of CFA produced a robust activation of microglia and astrocytes. These cells exhibited large cell bodies, thick processes and increases in the ionized calcium binding adapter molecule 1 (Iba-1, a microglial marker) or the glia fibrillary acidic protein (GFAP, an astrocytic marker). These cells also displayed immunoreactive signals, and an upregulation of the voltage-gated calcium channels (VGCCs) α2/δ-1 subunit, CX3CL1 and CX3CR1 expression levels in the spinal cord. These changes were associated with the development of thermal hyperalgesia. Immunofluorescence staining showed that VGCC α2/δ-1 subunit, a proposed gabapentin target of action, was widely distributed in primary afferent fibers terminals and dorsal horn neurons. CX3CL1, a potential trigger to activate microglia, colocalized with VGCC α2/δ-1 subunits in the spinal dorsal horn. However, its receptor CX3CR1 was mainly expressed in the spinal microglia. Multiple intraperitoneal (i.p.) gabapentin injections (100 mg/kg, once daily for 4 days with the first injection 60 min before intra-articular CFA) suppressed the activation of spinal microglia, downregulated spinal VGCC α2/δ-1 subunits decreased CX3CL1 levels and blocked the development of thermal hyperalgesia in MA rats. CONCLUSIONS: Here we provide the first evidence that gabapentin diminishes CX3CL1 signaling and spinal microglia activation induced by joint inflammation. We also show that the VGCC α2/δ-1 subunits might be involved in these events.


Subject(s)
Amines/pharmacology , Arthritis/pathology , Chemokine CX3CL1/metabolism , Cyclohexanecarboxylic Acids/pharmacology , Microglia/pathology , Signal Transduction/drug effects , Spinal Cord/pathology , gamma-Aminobutyric Acid/pharmacology , Amines/administration & dosage , Animals , Arthritis/complications , Arthritis/metabolism , CX3C Chemokine Receptor 1 , Calcium Channels, L-Type/metabolism , Cyclohexanecarboxylic Acids/administration & dosage , Disease Models, Animal , Freund's Adjuvant , Gabapentin , Hyperalgesia/complications , Hyperalgesia/metabolism , Hyperalgesia/pathology , Injections, Intra-Articular , Injections, Intraperitoneal , Lumbar Vertebrae/pathology , Male , Microglia/drug effects , Microglia/metabolism , Models, Biological , Pain/metabolism , Pain/pathology , Posterior Horn Cells/drug effects , Posterior Horn Cells/metabolism , Posterior Horn Cells/pathology , Protein Subunits/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Chemokine/metabolism , Time Factors , gamma-Aminobutyric Acid/administration & dosage
8.
Neurochem Res ; 35(11): 1780-6, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20717722

ABSTRACT

Previous studies indicated that disruption of glial function in the spinal cord enhanced electroacupuncture (EA) analgesia in arthritic rats, suggesting glia is involved in processing EA analgesia. To probe into the potential value for clinical practice, the present study was to investigate the effect of propentofylline, a glia inhibitor, on EA analgesia in rats. Mechanical allodynia induced by tetanic stimulation of sciatic nerve (TSS) was used as a pain model. On day 7 after TSS, EA treatment induced a significant increase in paw withdrawal threshold to mechanical stimulation. Intrathecal or intraperitoneal injection of propentofylline relieved TSS-induced mechanical allodynia. The combination of low dosage of propentofylline and EA produced more potent anti-allodynia than propentofylline or EA alone. Immunohistochemistry exhibited that TSS-induced activation of microglia and astrocytes was inhibited significantly by propentofylline. These results indicate that propentofylline and EA induce synergetic analgesia by interrupting spinal glial function.


Subject(s)
Analgesia , Electroacupuncture/methods , Spinal Cord/physiopathology , Xanthines/therapeutic use , Animals , Hyperalgesia/drug therapy , Hyperalgesia/therapy , Male , Neuroglia/drug effects , Neuroglia/physiology , Rats , Rats, Sprague-Dawley , Sciatic Nerve/physiopathology , Spinal Cord/drug effects , Tetany/physiopathology
9.
Acta Pharmacol Sin ; 31(5): 523-30, 2010 May.
Article in English | MEDLINE | ID: mdl-20364156

ABSTRACT

AIM: To investigate the effect of systemic administration dexmedetomidine, a selective alpha 2 adrenergic receptor (alpha(2)AR) agonist, on thermal hyperalgesia and spinal glial activation evoked by monoarthritis (MA). METHODS: MA was induced by an intra-articular injection of complete Freund's adjuvant (CFA). Thermal hyperalgesia was measured by Hargreaves' test. The spinal glial activation status was analyzed by GFAP (an astrocytic marker) and Iba-1 (a microglial marker) immunohistochemistry or immunoblotting. RESULTS: Unilateral intra-articular injection of CFA produced a robust glial activation of astrocytes and microglia in the spinal cord, which was associated with the development and maintenance of thermal hyperalgesia. Intraperitoneal (ip) injection of dexmedetomidine (2.5 and 10 microg/kg) was repeatedly given once daily for 5 days with the first injection 60 min before intra-articular CFA. At the dose of 10 microg/kg, dexmedetomidine significantly attenuated MA-induced ipsilateral hyperalgesia from day 2 to day 5. MA-induced up-regulation of GFAP expression on both sides of the spinal dorsal horn was significantly suppressed by day 5 post-MA following dexmedetomidine application, whereas MA-induced Iba-1 up-regulation was only partially suppressed. CONCLUSION: Systemic dexmedetomidine inhibits the activation of spinal glia, which is possibly associated with its antihyperalgesia in monoarthritic rats.


Subject(s)
Adrenergic alpha-Agonists/therapeutic use , Arthritis, Experimental/drug therapy , Dexmedetomidine/therapeutic use , Hyperalgesia/drug therapy , Microglia/drug effects , Spinal Cord/drug effects , Adrenergic alpha-Agonists/administration & dosage , Animals , Arthritis, Experimental/chemically induced , Arthritis, Experimental/pathology , Astrocytes/drug effects , Astrocytes/metabolism , Calcium-Binding Proteins/metabolism , Dexmedetomidine/administration & dosage , Freund's Adjuvant , Glial Fibrillary Acidic Protein/metabolism , Male , Microfilament Proteins , Microglia/metabolism , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL