Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Phytomedicine ; 128: 155411, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38518638

ABSTRACT

BACKGROUND: Emodin-8-O-ß-D-glucopyranoside (Em8G) is an active ingredient of traditional Chinese medicine Rhei Radix et Rhizoma and Polygonum multiflorum Thunb.. And it caused hepatotoxicity, while the underlying mechanism was not clear yet. PURPOSE: We aimed to explore the detrimental effects of Em8G on the zebrafish liver through the metabolome and transcriptome integrated analysis. STUDY DESIGN AND METHODS: In this study, zebrafish larvae were used in acute toxicity tests to reveal the hepatotoxicity of Em8G. Adult zebrafish were then used to evaluate the gender differences in hepatotoxicity induced by Em8G. Integration of transcriptomic and metabolomic analysis was used further to explore the molecular mechanisms underlying gender differences in hepatotoxicity. RESULTS: Our results showed that under non-lethal concentration exposure conditions, hepatotoxicity was observed in Em8G-treated zebrafish larvae, including changes in liver transmittance, liver area, hepatocyte apoptosis and hepatocyte vacuolation. Male adult zebrafish displayed a higher Em8G-induced hepatotoxicity than female zebrafish, as demonstrated by the higher mortality and histopathological alterations. The results of transcriptomics combined with metabolomics showed that Em8G mainly affected carbohydrate metabolism (such as TCA cycle) in male zebrafish and amino acid metabolism (such as arginine and proline metabolism) in females, suggesting that the difference of energy metabolism disorder may be the potential mechanism of male and female liver toxicity induced by Em8G. CONCLUSIONS: This study provided the direct evidence for the hepatotoxicity of Em8G to zebrafish models in vivo, and brought a new insight into the molecular mechanisms of Em8G hepatotoxicity, which can guide the rational application of this phytotoxin. In addition, our findings revealed gender differences in the hepatotoxicity of Em8G to zebrafish, which is related to energy metabolism and provided a methodological reference for evaluating hepatotoxic drugs with gender differences.


Subject(s)
Chemical and Drug Induced Liver Injury , Liver , Metabolomics , Zebrafish , Animals , Male , Female , Liver/drug effects , Liver/metabolism , Transcriptome/drug effects , Glucosides/toxicity , Glucosides/pharmacology , Sex Factors , Emodin/analogs & derivatives , Emodin/toxicity , Emodin/pharmacology , Larva/drug effects , Anthraquinones/toxicity , Toxicity Tests, Acute , Drugs, Chinese Herbal/toxicity
2.
Plant Dis ; 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38411609

ABSTRACT

Epimedium sagittatum (Sieb.et Zucc.) Maxim. is an important material of traditional Chinese medicine because of the rich content of flavonoids that are used to treat osteoporosis, liver cancer, and sexual dysfunction (Liu et al. 2013). A leaf blight was observed on E. sagittatum in Zhumadian City, China (32°58'12" N, 114°37'48" E, continental monsoon climate) in June 2021. Survey indicated that about 18% of the plants were infected in a 266-ha commercial planting area. The initial symptoms were white patches with tan borders, irregular in outline, with small black particles visible on the center of the lesions. In a week or so, patches extended throughout the leaf, and then leaves withered. Thirty leaves with symptoms collected from five different sites were cut into 5×5 mm pieces, and then surface-sterilized with 75% ethanol for 15 s followed by rinsing with double distilled water (ddH2O) three times. The pieces were then disinfested with 0.1% HgCl2 solution for 30 s, and rinsed with ddH2O, then placed onto potato-dextrose agar medium (PDA) and incubated in the dark for 3 d at 28°C. Eight fungal isolates were purified; of these, only the isolate HY2-1 infected the host plant and was selected for further morphological characterization. The colonies of HY2-1 were olive green with loose aerial hyphae on PDA. Conidiophores were single or branched, producing brown conidia in short chains. Conidia were obclavate, obpyriform, or ellipsoidal, 15.9-47.3 µm × 7.6-16.6 µm (n=50) and pale brown or dark brown with a short cylindrical beak at the tip that contained 1-5 transverse septa and 0-4 longitudinal septa. Morphological characteristics of the isolate were identical with those of Alternaria species (Huang et al. 2022). For molecular identification, the internal transcribed spacers (ITS), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (Weir et al. 2012), major allergen Alt a 1(Alt a 1) and translation elongation factor 1-α gene (TEF) (Lawrence et al. 2013) were amplified and sequenced using the primers ITS4/5, GDF/GDR, Alt-F/R, and EF1-728F/986R, respectively. The results of the sequencing were uploaded to GenBank as ITS (OR418487), GAPDH (OR419792), Alt a 1 (OR419794), and TEF (OR419796), respectively. Phylogenetic analyses were performed by concatenating all the sequenced loci using the Bayesian method in Phylosuite (Zhang et al.2020). The phylogenetic tree indicated that the isolate belongs to the A. alternata clade with a bootstrap value of 75%. The pathogen was identified as A. alternata based on the morphological and molecular results. To satisfy Koch's postulates, a conidial suspension (106 conidia/mL) of the HY2-1 was prepared with ddH2O to infect the healthy plants. Ninety healthy leaves on 30 plants in pots were punctured using a sterilized needle, and then inoculated by spraying the conidial suspension on the wounded leaves in a greenhouse at 25°C and 80% relative humidity. The control plants were sprayed with ddH2O. The plants showed similar symptoms to the original infected plant 15 d after inoculation. The controls showed no symptoms. A pure culture of A. alternata was isolated and identified again as previously described. Leaf blight caused by A. alternata has been reported on Taro (Liu et al. 2020), Toona ciliata (Wang et al. 2023), etc. To our knowledge, this is the first report of E. sagittatum leaf blight caused by A. alternata in China. The results will help to develop effective control strategies for leaf blight on E. sagittatum.

3.
Article in English | MEDLINE | ID: mdl-37917901

ABSTRACT

Objective: This study aims to investigate the relationship between folic acid (FA) metabolic gene polymorphisms, homocysteine (Hcy), vitamin B12 (Vit B12), and red blood cell folate (RBCF) with adverse pregnancy. The findings of this study can help in the prevention and treatment of adverse pregnancy in the future. Methods: 118 pregnant women admitted to Qingdao Central Hospital between August 2020 and October 2022 were selected for retrospective analysis, including 62 cases of normal delivery (control group, CG) and 56 cases of adverse pregnancy (research group, RG). The single nucleotide polymorphisms of MTHFR C677T, MTHFR A1298C, and MTRR A66G gene loci were tested in both cohorts. Besides, differences in Hcy, Vit B12, and RBCF levels were observed, as well as Hcy, Vit B12, and RBCF alterations in different genotype carriers in the research group. Results: An elevated proportion of MTHFR 677TT-type gene and MTRR 66GG-type gene carriers and a lower proportion of MTRR 66GG-type gene carriers were found in the research group (χ2 = 4.458, 4.238, 4.206, P = .035, .040, .040). As indicated by the Logistic regression analysis, carriers of MTHFR 677TT and MTRR 66GG gene had an increased risk of adverse pregnancy outcomes (95%CI=2.881-5.942, 1.427-3.809, P < .001), while MTRR 66AG carriers had a decreased risk (95%CI=0.124-1.849, P < .001). Finally, Hcy levels of MTHFR 677TT and MTRR 66GG gene carriers increased, while Vit B12 and RBCF decreased; the opposite was true for MTRR 66AG gene carriers (P < .001). Conclusions: FA metabolic gene polymorphisms, Hcy, Vit B12, and RBCF are closely related to adverse pregnancy outcomes, which is of great significance for future clinical evaluation of adverse pregnancy.

4.
Zhongguo Zhong Yao Za Zhi ; 48(15): 4106-4114, 2023 Aug.
Article in Chinese | MEDLINE | ID: mdl-37802778

ABSTRACT

This study aims to reveal the effects of different growth patterns and years on the quality of Saposhnikoviae Radix samples. The apparent colors of the powder samples were quantified by a colorimeter, and the total color values(E~*ab) were calculated. The content of prim-O-glucosylcimifugin, cimifugin, 4'-O-ß-D-glucosyl-5-O-methylvisamminol, sec-O-glucosylhamaudol, and 3'-O-angeloylhamaudol in the samples was simultaneously determined by high performance liquid chromatography(HPLC). Cluster analysis, principal component analysis, partial least squares discriminant analysis, and Pearson correlation analysis were performed to analyze the powder chromatic values and the content of 5 components. The results showed that the E~*ab values of the samples were in the order of wild group<multiple-year-old group<one-year-old group. The content of cimifugin, sec-O-glucosylhamaudol, and 3'-O-angeloylhamaudol in the wild group was significantly higher than that in the multiple-year-old and one-year-old groups. The results of multivariate statistical analysis showed that the quality of multiple-year-old group varied greatly. The quality of the multiple-year-old samples was close to that of the wild group and better than that of the one-year-old group. The variable importance in the projection(VIP) values of b~*, 3'-O-angeloylhamaudol content, E~*ab, and L~* were all larger than 1, and that of cimifugin content was close to 1. The E~*ab value was negatively correlated with the content of prim-O-glucosylcimifugin, cimifugin, sec-O-glucosylhamaudol, and 3'-O-angeloylhamaudol, while it had no linear correlation with the 4'-O-ß-D-glucosyl-5-O-methylvisamminol content. The growth patterns and years had different effects on the quality of Saposhnikoviae Radix samples. The chromatic values of Saposhnikoviae Radix and the content of 5 components can be used to evaluate the quality of Saposhnikoviae Radix, and 3'-O-angeloylhamaudol and cinmifugin can be considered as markers for the quality control of Saposhnikovia divaricata during the growing process.


Subject(s)
Apiaceae , Drugs, Chinese Herbal , Powders , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/analysis , Plant Roots/chemistry
5.
Talanta ; 265: 124862, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37379755

ABSTRACT

The development of efficient fluorescence-based detection tools with high contrast and accuracy in cancer diagnosis has recently attracted extensive attention. Changes in the microenvironments between cancer and normal cells provide new biomarkers for precise and comprehensive cancer diagnosis. Herein, a dual-organelle-targeted probe with multiple-parameter response is developed to realize cancer detection. We designed a tetraphenylethylene (TPE)-based fluorescent probe TPE-PH-KD connected with quinolinium group for simultaneous detection of viscosity and pH. Due to the restriction on the double bond's rotation, the probe respond to viscosity changes in the green channel with extreme sensitivity. Interestingly, the probe exhibited strong emission of red channel in acidic environment, and the rearrangement of ortho-OH group occurred in the basic form with weak fluorescence when pH increased. Additionally, cell colocalization studies revealed that the probe was located in the mitochondria and lysosome of cancer cells. Following treatment with carbonyl cyanide m-chloro phenylhydrazone (CCCP), chloroquine, and nystatin, the pH or viscosity changes in the dual channels are also monitored in real-time. Furthermore, the probe TPE-PH-KD could effectively discriminate cancer from normal cells and organs with high-contrast fluorescence imaging, which sparked more research on an efficient tool for highly selectively visualizing tumors at the organ level.


Subject(s)
Fluorescent Dyes , Neoplasms , Humans , Viscosity , Mitochondria , Optical Imaging/methods , HeLa Cells , Hydrogen-Ion Concentration , Neoplasms/diagnostic imaging
6.
J Pharm Pharmacol ; 75(9): 1212-1224, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37329511

ABSTRACT

OBJECTIVES: Scutellaria baicalensis leaf (SLE), the above-ground part of the traditional Chinese medicine Scutellaria baicalensis Georgi, is rich in resources and contains a large number of flavonoids with anti-inflammatory, antioxidant and neuroprotective functions. The present study evaluated the ameliorative effects and related mechanisms of SLE on d-gal-induced ageing rats, providing a theoretical basis for the exploitation of SLE. METHODS: This experiment investigated the mechanism of SLE for anti-ageing by non-targeted metabonomics technology combined with targeted quantitative analysis and molecular biology technology. KEY FINDINGS: Non-targeted metabonomics analysis showed that 39 different metabolites were screened out. Among them, 38 metabolites were regulated by SLE (0.4 g/kg), and 33 metabolites were regulated by SLE (0.8 g/kg). Through enrichment analysis, glutamine-glutamate metabolic pathway was identified as the key metabolic pathway. Subsequently, the results of targeted quantitative and biochemical analysis displayed that the contents of key metabolites and the activities of enzymes in glutamine-glutamate metabolic pathway and glutathione synthesis could be regulated by SLE. Furthermore, the results of Western blotting indicated that SLE significantly modulated the expression of Nrf2, GCLC, GCLM, HO-1, and NQO1 proteins. CONCLUSION: To sum up, the anti-ageing mechanism of SLE was related to glutamine-glutamate metabolism pathway and Nrf2 signalling pathway.


Subject(s)
Glutamine , Scutellaria baicalensis , Rats , Animals , Scutellaria baicalensis/chemistry , Glutamine/metabolism , Glutamic Acid/metabolism , NF-E2-Related Factor 2/metabolism , Liver , Aging/metabolism , Plant Leaves , Glutathione/metabolism
7.
Metabolites ; 13(2)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36837913

ABSTRACT

The harvesting period is a critical period for the accumulation of flavonoids in the leaves of the important medicinal plant Epimedium sagittatum. In this study, we conducted an experiment on E. sagittatum leaves sprayed with mineral elements with the aim of improving the quality of the herbal leafage during the harvesting period. We elucidated the changes in flavonoids (icariin, epimedin A, epimedin B, and epimedin C) in E. sagittatum leaves. The sum of main flavonoids content reached a maximum (11.74%) at 20 days after the high-concentration Fe2+ (2500 mg·L-1) treatment. We analyzed the FT-IR spectra characteristics of E. sagittatum leaf samples using the FT-IR technique, and constructed an OPLS-DA model and identified characteristic peaks to achieve differentiated identification of E. sagittatum. Further, widely untargeted metabolomic analysis identified different classes of metabolites. As the most important characteristic flavonoids, the relative contents of icariin, icaritin, icariside I, and icariside II were found to be up-regulated by high-Fe2+ treatment. Our experimental results demonstrate that high-concentration Fe2+ treatment is an effective measure to increase the flavonoids content in E. sagittatum leaves during the harvesting period, which can provide a scientific basis for the improvement of E. sagittatum leaf cultivation agronomic measures.

8.
Zhongguo Zhong Yao Za Zhi ; 47(21): 5855-5862, 2022 Nov.
Article in Chinese | MEDLINE | ID: mdl-36472004

ABSTRACT

To comprehensively evaluate the quality of commercial Ginseng Radix et Rhizoma Rubra, 43 batches of commercial Ginseng Radix et Rhizoma Rubra were collected to determine the content of nine ginsenosides Rg_1, Re, Rb_1, Rk_3, Rh_4, 20(S)-Rg_3, 20(R)-Rg_3, Rk_1, and Rg_5 by high performance liquid chromatography(HPLC). The quality of the commercial Ginseng Radix et Rhizoma Rubra was evaluated by correlation analysis, principal component analysis, factor analysis, analysis of variance(ANOVA), and cluster heatmap analysis. The content determination indicated that the content of common ginsenosides in commercial Ginseng Radix et Rhizoma Rubra were higher while that of rare ginsenosides were lower. Multivariate statistical analysis revealed that ginsenosides Rg_1 and Rb_1 were significantly positively correlated with rare ginsenosides, and Rg_1, Rb_1 and rare ginsenosides played an important role in evaluating the quality of commercial Ginseng Radix et Rhizoma Rubra. In combination with the processing principle and current quality situation of Ginseng Radix et Rhizoma Rubra, it is recommended to improve the content limit of Rb_1 in the existing quality standards.


Subject(s)
Drugs, Chinese Herbal , Ginsenosides , Panax , Ginsenosides/analysis , Rhizome/chemistry , Plant Roots/chemistry , Chromatography, High Pressure Liquid
9.
Metabolites ; 12(10)2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36295886

ABSTRACT

As an important medicinal plant, we still do not know the effect of exogenous hormones on absorption of elements and accumulation of secondary metabolites in Artemisia argyi leaves. In this work, we analyzed the difference in 21 elements absorbed by A. argyi leaves under three exogenous hormone (MeJA, SA and ABA) treatments, and also clarified the correlation between 21 elements and eight bioactive components. Different hormone treatments changed the absorption and enrichment of elements, and the composition also changed significantly. The contents of eight bioactive components changed significantly under different hormone treatments. When A. argyi was stimulated by exogenous hormones, the content of secondary metabolites was adjusted in the leaves through changes in the absorption and enrichment of elements. The widely untargeted metabolomic analysis further confirmed that ABA changes the metabolic direction of secondary metabolites in A. argyi leaves and stimulates the biosynthesis of multiple secondary metabolites including phenylpropanoids, flavonoids, terpenoids, alkaloids and others. These results provide a new perspective for the changes in element absorption and the mechanism of secondary metabolic components in A. argyi leaves under exogenous hormone treatments, and also deepen people's understanding of the interaction mechanism between medicinal plants and hormones.

10.
Molecules ; 27(17)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36080237

ABSTRACT

Bupleurum chinense is an important medicinal plant in China; however, little is known regarding how this plant transcribes and synthesizes saikosaponins under drought stress. Herein, we investigated how drought stress stimulates the transcriptional changes of B. chinense to synthesize saikosaponins. Short-term drought stress induced the accumulation of saikosaponins, especially from the first re-watering stage (RD_1 stage) to the second re-watering stage (RD_2 stage). Saikosaponin-a and saikosaponin-d increased by 84.60% and 75.13%, respectively, from the RD_1 stage to the RD_2 stage. Drought stress also stimulated a rapid increase in the levels of the hormones abscisic acid, salicylic acid, and jasmonic acid. We screened 49 Unigenes regarding the terpenoid backbone and triterpenoid biosynthesis, of which 33 differential genes were significantly up-regulated during drought stress. Moreover, one P450 and two UGTs are possibly involved in the synthesis of saikosaponins, while some transcription factors may be involved in regulating the expression of key enzyme genes. Our study provides a reference for the cultivation of B. chinense and a practical means to ensure the quality (safety and effectiveness) of B. chinense for medicinal use, as well as insights into the modernization of the China Agriculture Research System.


Subject(s)
Bupleurum , Oleanolic Acid , Saponins , Bupleurum/genetics , Droughts , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/metabolism , Plant Roots/genetics , Saponins/metabolism , Terpenes/metabolism
11.
Water Res ; 221: 118748, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35728497

ABSTRACT

Acid mine drainage (AMD) contains abundant iron, sulfates, and various metal ions, and it causes environmental pollution. The traditional AMD lime neutralization forms a layer of iron hydroxide and gypsum on the surface of the lime particles, preventing continuous reaction and leading to excessive lime addition and neutralized sludge production. In this study, an approach for treating AMD using a cyclic process of biooxidation and electroreduction before lime neutralization was proposed, in which the Fe2+ in AMD was oxidized to Fe3+ and induced to form schwertmannite through Acidithiobacillus ferrooxidans. The remaining Fe3+ was reduced to Fe2+ using an electric field. After three biooxidation and two electroreduction cycles, 98.2% of Fe and 62.4% of SO42- in AMD precipitated as schwertmannite (Fe8O8(OH)5.16(SO4)1.37). The yield of schwertmannite reached 33.98 g/LAMD, with a high specific surface area of 112.59 m2/g. The lime dosage and sludge yield of the treated AMD in the subsequent neutralization stage (pH = 7.00) decreased by 85.0% and 74.5%, respectively, than those of raw AMD. The pilot test results showed that the integrated treatment of biooxidation-electroreduction cyclic mineralization and lime neutralization has practical applications.


Subject(s)
Sewage , Water Pollutants, Chemical , Acids , Calcium Compounds , Hydrogen-Ion Concentration , Iron , Iron Compounds , Oxides , Water Pollutants, Chemical/analysis
12.
Carbohydr Polym ; 277: 118864, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34893269

ABSTRACT

Ulcerative colitis (UC) is an inflammatory bowel disease that affects the colon and rectum. Although galectin-3 (Gal-3) has been reported to play a proinflammatory role in UC, it is unknown whether pectic polysaccharide, a Gal-3 inhibitor in tumor metastasis, can alleviate UC by inhibiting Gal-3. The aim of this study was to investigate the anti-inflammatory effects and underlying mechanisms of SCLP, a pectic polysaccharide purified from Smilax china L. in our previous work, on dextran sulfate sodium-induced UC in BALB/c mice. The results showed that SCLP could significantly improve symptoms, alleviate histopathological damage and reduce the secretion of inflammatory mediators in mice with UC. Analysis of the anti-colitis mechanisms indicated that SCLP could inhibit the Gal-3/NLRP3 inflammasome/IL-1ß pathway by suppressing the expression of Gal-3 and the interaction of Gal-3 and NLRP3. Our results suggested that SCLP could be a promising candidate for prevention and treatment of UC.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Colitis, Ulcerative/drug therapy , Inflammasomes/antagonists & inhibitors , Pectins/pharmacology , Polysaccharides/pharmacology , Smilax/chemistry , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/metabolism , Dextran Sulfate , Galectin 3/antagonists & inhibitors , Galectin 3/metabolism , Inflammasomes/metabolism , Male , Mice , Mice, Inbred BALB C , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pectins/chemistry , Polysaccharides/chemistry
13.
Mater Sci Eng C Mater Biol Appl ; 131: 112524, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34857303

ABSTRACT

Currently, the combining photodynamic therapy (PDT) with photothermal therapy (PTT) modalities based on a single near infrared (NIR) laser irradiation and highly selective internalization still remain a challenge. Herein, a hierarchical dual-responsive cleavable nanosystem for synergetic NIR triggered PDT/PTT is reported. The engineered nanoplatform (Au NRs/Cur/UCNPs@PBE) is designed by loading curcumin (Cur, photosensitizer) on gold nanarods (Au NRs) to build PDT/PTT therapy system, which was encapsulated outside with upconversion nanoparticles (UCNPs) and then modified with phenylboronic double ester (PBE). The pH and ROS-responsive feature made Au NRs/Cur/UCNPs@PBE provide a fundamental structural evolution and improve the specificity and intracellular accumulation to tumors. Au NRs/Cur/UCNPs@PBE exhibited significant PDT and PTT efficiency against two type melanoma cells due to upconversion nanoparticles and Au NRs induced by an 808 nm laser. Notably, the platform can mainly activate apoptosis and partial ferroptosis to achieve the synergistic PDT/PTT, furthermore, the integrated PDT with PTT using Au NRs/Cur/UCNPs@PBE showcased a great antitumor efficacy in vivo superior to the other alone treatment. Our findings highlight that this intelligent nanoagents for synergistic phototherapy facilitate enhanced fighting melanoma and provide a promising strategy for melanoma theranostics.


Subject(s)
Melanoma , Nanoparticles , Photochemotherapy , Cell Line, Tumor , Gold , Humans , Melanoma/drug therapy , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Phototherapy , Photothermal Therapy
14.
Article in English | MEDLINE | ID: mdl-34950217

ABSTRACT

BACKGROUND: Realgar was usually selected as a substitute for arsenic trioxide to treat acute promyelocytic leukemia due to its higher effect without high cardiotoxicity. In traditional Chinese medicine (TCM), realgar is usually processed by the water-grinding method clinically, but the mechanism of realgar processing detoxification is still unclear. However, it is necessary to take safety and efficacy into account while evaluating a drug. METHODS: Sixty male Wistar rats were divided into control group, realgar products-treated groups, and corresponding subgroups. Biochemistry analysis and histopathological examination were performed in the study, and plasma samples were collected from all the rats for metabolomics analysis. RESULTS: No significant toxicity was observed in rats treated with 0.64 g/kg/day grinding realgar (G-r) and water-grinding realgar (WG-r). When the dose increased to 1.92 g/kg/day, the liver weight coefficients of the rats treated with G-r (HG-r: 3.65 ± 0.26%) and WG-r (HWG-r: 3.67 ± 0.14%) increased significantly and severe hepatic injury occurred in comparison to the control group (Group C: 3.00 ± 0.21%). After one week's withdrawal, the liver injury caused by the high dose of WG-r significantly recovered, while the liver damage caused by G-r was more difficult to recover. In metabolomics analysis, 14 metabolites were identified as the potential biomarkers in realgar-treated rats. These metabolites indicated that there were perturbations of the primary bile acid biosynthesis, arachidonic acid metabolism, linoleic acid metabolism, and glycerophospholipid metabolism in the realgar-treated groups. CONCLUSIONS: These results illustrate that, as a TCM processing method, water grinding had the effect of reducing toxicity, and the metabolomics method may be a valuable tool for studying the toxicity induced by TCM and the mechanism of TCM processing.

15.
Zhongguo Zhong Yao Za Zhi ; 46(17): 4389-4394, 2021 Sep.
Article in Chinese | MEDLINE | ID: mdl-34581041

ABSTRACT

This paper explored the ecologically suitable areas for growing Scutellaria baicalensis using Geographic Information System for Global Medicinal Plants(GMPGIS), to figure out the resource distribution of S. baicalensis worldwide and provide a scientific basis for its scientific introduction. A total of 349 S. baicalensis sampling sites were selected all over the world for GMPGIS-based analy-sis of the ecologically suitable areas with six ecological factors including annual average temperature, average temperature during the coldest season, average temperature during the warmest season, average annual precipitation, average annual relative humidity, and annual average illumination and soil type as the ecological indexes. The results demonstrated that the ecologically suitable areas for growing S. baicalensis were mostly located in the Northern hemisphere, and the suitable areas in the United States, China, and Russia accounted for 19.25%, 18.66%, and 13.15% of the total area worldwide, respectively. In China, the Inner Mongolia, Heilongjiang province, and Yunnan province occupied the largest proportions of the total area, namely 14.28%, 8.72%, and 6.18%, respectively. As revealed by ecological factors of each sampling site, S. baicalensis was resistant to low temperature but not to high temperature. The adaptive range of average annual precipitation is narrower than that of average annual air humidity. The suitable soils were mainly inceptisol, alfisol, and fluvisol. High temperature and rainy climate or excessively high soil bulk density was not conducive to the growth of S. baicalensis. The adoption of GMPGIS enabled to obtain areas with the greatest ecological similarity for S. baicalensis, which were reliable data supporting the exploration of resource distribution and reasonable introduction of S. baicalensis.


Subject(s)
Plants, Medicinal , Scutellaria baicalensis , China , Climate , Soil
16.
Nat Commun ; 12(1): 3309, 2021 06 03.
Article in English | MEDLINE | ID: mdl-34083527

ABSTRACT

The ongoing pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), necessitates strategies to identify prophylactic and therapeutic drug candidates for rapid clinical deployment. Here, we describe a screening pipeline for the discovery of efficacious SARS-CoV-2 inhibitors. We screen a best-in-class drug repurposing library, ReFRAME, against two high-throughput, high-content imaging infection assays: one using HeLa cells expressing SARS-CoV-2 receptor ACE2 and the other using lung epithelial Calu-3 cells. From nearly 12,000 compounds, we identify 49 (in HeLa-ACE2) and 41 (in Calu-3) compounds capable of selectively inhibiting SARS-CoV-2 replication. Notably, most screen hits are cell-line specific, likely due to different virus entry mechanisms or host cell-specific sensitivities to modulators. Among these promising hits, the antivirals nelfinavir and the parent of prodrug MK-4482 possess desirable in vitro activity, pharmacokinetic and human safety profiles, and both reduce SARS-CoV-2 replication in an orthogonal human differentiated primary cell model. Furthermore, MK-4482 effectively blocks SARS-CoV-2 infection in a hamster model. Overall, we identify direct-acting antivirals as the most promising compounds for drug repurposing, additional compounds that may have value in combination therapies, and tool compounds for identification of viral host cell targets.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Drug Repositioning/methods , Pandemics , SARS-CoV-2 , Animals , COVID-19/prevention & control , COVID-19/virology , Cell Line , Cytidine/administration & dosage , Cytidine/analogs & derivatives , Cytidine/pharmacology , Databases, Pharmaceutical , Drug Discovery/methods , Drug Evaluation, Preclinical/methods , HeLa Cells , High-Throughput Screening Assays/methods , Humans , Hydroxylamines/administration & dosage , Hydroxylamines/pharmacology , Mesocricetus , Nelfinavir/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Virus Replication/drug effects
17.
Int Microbiol ; 24(2): 263-273, 2021 May.
Article in English | MEDLINE | ID: mdl-33604753

ABSTRACT

PURPOSE: In the present study, we characterized the microbiomes of acute leukemia (AL) patients who achieved complete remission following remission induction chemotherapy (RIC) as outpatients, but who did not receive antimicrobials to treat or prevent febrile neutropenia. METHODS: Saliva and stool samples from 9 patients with acute myeloid leukemia, 11 patients with acute lymphoblastic leukemia, and 5 healthy controls were subjected to 16S ribosomal RNA sequencing at baseline and at 3 months following RIC. Only patients who achieved remission at 3 months post-treatment were included. We excluded anyone who used antimicrobials within 2 months of enrollment or at any time during the study period. RESULTS: At baseline, the relative abundances of species of Prevotella maculosa (P=0.001), Megasphaera micronuciformis (P=0.014), Roseburia inulinivorans (P=0.021), and Bacteroides uniformis (P=0.004) in saliva and Prevotella copri (P=0.002) in the stools of controls were significantly higher than in AL patients. Following RIC, the relative abundances of Eubacterium sp. oral clone DO008 (P=0.012), Leptotrichia sp. oral clone IK040 (P=0.002), Oribacterium sp. oral taxon 108 (P=0.029), Megasphaera micronuciformis (P=0.016), TM7 phylum sp. oral clone DR034 (P<0.001), Roseburia inulinivorans (P=0.034), Actinomyces odontolyticus (P=0.014), Leptotrichia buccalis (P=0.005), and Prevotella melaninogenica (P=0.046) in saliva and Lactobacillus fermentum (P=0.046), Coprococcus catus (P=0.050), butyrate-producing bacterium SS3/4 (P=0.013), and Bacteroides coprocola (P=0.027) in the stools of AL patients were significantly greater than in controls. CONCLUSION: Following RIC, several taxa are changed in stool and salvia samples of AL patients. Our results warrant future large-scale multicenter studies to examine whether the microbiota might have an effect on clinical outcomes of AL patients.


Subject(s)
Antineoplastic Agents/therapeutic use , Gastrointestinal Microbiome/drug effects , Induction Chemotherapy , Leukemia/drug therapy , Leukemia/microbiology , Adult , Aged , Bacteria/classification , Bacteria/drug effects , Bacteria/genetics , Bacteria/isolation & purification , Feces/microbiology , Female , Humans , Male , Middle Aged , Mouth/microbiology , Phylogeny , Young Adult
18.
Phytochemistry ; 177: 112434, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32544729

ABSTRACT

Drought stress affects vegetative and reproductive growth processes and synthesis of secondary metabolites in plants. We assessed relevant indicators of vegetative and reproductive growth in Bupleurum chinense DC. during drought stress. Samples were collected on days 4, 8, 12, 20, and 24 of a drought treatment according to drought stress severity in order to elucidate potential effects on synthesis of flavonoids in leaves and saikosaponins in roots of B. chinense. The results showed that B. chinense can adapt to drought stress mainly by increasing concentrations of osmoregulatory substances (soluble protein and proline) and increasing activity of protective enzymes (superoxide dismutase and catalase), as observed on days 12 and 20 of the treatment. Secondary metabolite concentrations in B. chinense roots and leaves showed significant differences-drought stress increased saikosaponin concentrations in roots by 9.85% and 6.41% during vegetative and reproductive growth, respectively, on day 20, and saikosaponin concentrations in roots were higher during vegetative growth than during reproductive growth. In leaves, large amounts of antioxidants were consumed owing to drought stress, which decreased leaf rutin concentrations by 38.79% and 30.11% during vegetative and reproductive growth, respectively, as observed on day 20; overall, leaf rutin concentrations were lower during vegetative growth than during reproductive growth. Changes in soil water content are known to affect synthesis of secondary metabolites in medicinal plants by altering gene transcription, and affected genes may synergistically respond to soil water changes and alter concentrations of flavonoid in leaves and of saikosaponin in roots. The gene F3H down-regulates flavonoid production in leaves. Squalene epoxidase and ß-amyrin synthase genes may be key genes regulating saikosaponin accumulation, and changes in their expression corresponded to accumulation of saikosaponins. Our results provide insights in B. chinense adaptation to drought stress through physiological changes and regulation of secondary metabolite production in different plant tissues.


Subject(s)
Bupleurum , Droughts , Flavonoids , Oleanolic Acid/analogs & derivatives , Plant Leaves , Plant Roots , Saponins
19.
J Nanosci Nanotechnol ; 20(10): 6518-6524, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32385008

ABSTRACT

This study aimed to determine the effects of Tilburg Frailty Indicator (TFI) and frailty phenotype (FP) in senile inpatients with frailty and provide a reference for the clinical evaluation of debilitating elderly patients. The effect of silver nanoparticle (AgNP)-silver needle acupuncture was also evaluated. Overall, 48 elderly inpatients with an average age of 69.5±6.2 years were included in the study. The results of two weakness assessment methods in screening the same elderly population were compared, and the correlation or consistency between the two methods was analyzed. A AgNPsilver needle was used for acupuncture treatment. The TFI score ranged from 0 to 12, with an average score of 4.0±0.7 (frailty [TFI>5] in 22 elderly patients [45.8%] and non-frailty in 26 patients [54.2%]). FP was presented in different stages, and the FP score ranged from 0 to 5, with an average score of 2.1±1.4, including non-frailty in 12 (25%) patients and pre-frailty in 19 (39.6%) patients. Moreover, 17 patients (35.4%) were debilitated. The two assessment methods showed that the degree of debilitation increased with advancing age in the elderly. The TFI score was positively associated with the defined stage of FP (r = 0.911, P <0.001). The consistency of TFI grading with phenotypic definition kappa value was 0.786 (P <0.001), and the area under the curve was 0.872 (95% confidence interval, 0.834-1.000; P <0.05). After acupuncture and moxibustion, the patient's condition evidently improved. In this study, the proportion of non-debilitating elderly hospitalized patients was higher than that of debilitating elderly hospitalized patients, and the degree of debilitating increased with advancing age. The TFI score was positively associated with the stage of phenotypic definition, and TFI frailty assessment was highly sensitive. Both methods had screening value, but TFI was more effective in screening patients with pre-frailty than FP, resulting in the early intervention and treatment of debilitating elderly hospitalized patients. A silver needle acupuncture can be used for treating senile frailty, providing a new idea for the clinical treatment of frailty.


Subject(s)
Frailty , Metal Nanoparticles , Aged , Frail Elderly , Geriatric Assessment , Humans , Inpatients , Middle Aged , Phenotype , Psychometrics , Silver , Surveys and Questionnaires
20.
J Ethnopharmacol ; 248: 112308, 2020 Feb 10.
Article in English | MEDLINE | ID: mdl-31622745

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Dendrobium officinale polysaccharide (DOP) is the main active ingredient of Dendrobium officinale Kimura & Migo, which is a precious traditional Chinese medicine and often used in treatment of hepatitis, diabetes, obesity and rheumatoid arthritis. AIM OF THE STUDY: DOP exhibits significant hypoglycemic activity, while its mechanism remains unclear. The present study aims to investigate the hypoglycemic mechanisms of DOP based on the glucagon-mediated signaling pathways and the liver glycogen structure, which catalyze hepatic glucose metabolism, and provide new knowledge about the antidiabetic mechanism of DOP and further evidence for its clinical use for diabetes. MATERIALS AND METHODS: DOP were obtained from the dry stems of Dendrobium officinale by water extraction and alcohol precipitation method. T2DM mice model was established by high-fat diet combined with streptozotocin. Liver histopathological changes were observed by H&E and PAS straining. Pancreatic histology was studied by H&E staining and immunofluorescence analysis. The levels of glucagon and insulin were detected by Elisa Kit and the hepatic glycogen content was detected by GOPOD. The expressions of the hepatic glycogen-related metabolism enzymes, hepatic gluconeogenesis enzymes, and the related protein in cAMP-PKA and Akt/FoxO1 signaling pathways were detected by western blots. Liver glycogen was extracted from the liver tissues by sucrose density gradient centrifugation, and size exclusion chromatography (SEC) was used to analyze the structure of liver glycogen. RESULTS: DOP could significantly affect the glucagon-mediated signaling pathways, cAMP-PKA and Akt/FoxO1, to further promote hepatic glycogen synthesis, inhibit hepatic glycogen degradation and hepatic gluconeogenesis. Moreover, DOP could reverse the instability of the liver glycogen structure and thus probably suppressed glycogen degradation. Thus, DOP finally would ameliorate hepatic glucose metabolism via glucagon-mediated signaling pathways and modifying liver-glycogen structure in diabetic mice. CONCLUSIONS: The hypoglycemic mechanism of DOP might be associated with the regulation of glucagon-mediated hepatic glycogen metabolism and gluconeogenesis, and of liver glycogen structure, contributing to improved hepatic glucose metabolism in diabetic mice.


Subject(s)
Dendrobium , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Glucagon/metabolism , Glucose/metabolism , Glycogen/metabolism , Hypoglycemic Agents/pharmacology , Liver/drug effects , Plant Extracts/pharmacology , Polysaccharides/pharmacology , Signal Transduction/drug effects , Animals , Dendrobium/chemistry , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/chemically induced , Diabetes Mellitus, Type 2/metabolism , Diet, High-Fat , Glycogen/chemistry , Hypoglycemic Agents/isolation & purification , Liver/metabolism , Male , Mice, Inbred C57BL , Molecular Structure , Plant Extracts/isolation & purification , Polysaccharides/isolation & purification , Streptozocin
SELECTION OF CITATIONS
SEARCH DETAIL