Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Sci Food Agric ; 103(11): 5500-5510, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37062935

ABSTRACT

BACKGROUND: Moringa oleifera (M. oleifera) leaves are rich in nutrients and bioactive ingredients. This study was aimed at evaluating the anti-fatigue effect of the ethanol extract of M. oleifera leaves (MLEE) on mice and its primary mechanism of action using a weight-loaded forced swimming test. In the present study, MLEE was prepared by ultrasound-assisted extraction, and its anti-fatigue effect and antioxidant capacity were evaluated in mice. Mice were administrated MLEE (320 mg kg-1 body weight) for 15 days. RESULTS: MLEE supplementation significantly increased levels of glucose and non-esterified fatty acids (NEFA), while decreasing levels of lactate and blood urea nitrogen in serum (P < 0.05); the levels of glycogen in the liver and muscle were also increased, as was the activity of glycogen synthase and the level of NEFA in muscle (P < 0.05). According to a Western blot analysis, MLEE increased the expression of AMPKα1, JNK, AKT and STAT3 in the muscle of mice. CONCLUSION: Our findings indicate that MLEE has an anti-fatigue effect via the AMPK-linked route, which enables it to control energy metabolism and enhance antioxidant enzyme activity. © 2023 Society of Chemical Industry.


Subject(s)
Moringa oleifera , Mice , Animals , Moringa oleifera/chemistry , Antioxidants/chemistry , Ethanol/analysis , Fatty Acids, Nonesterified/analysis , Plant Leaves/chemistry , Plant Extracts/chemistry
2.
Front Microbiol ; 13: 1065780, 2022.
Article in English | MEDLINE | ID: mdl-36532488

ABSTRACT

Cold is a common source of stress in the alpine areas of northern China. It affects the microbial community, resulting in the invasion of pathogenic microorganisms and intestinal diseases. In recent years, studies have reported that Chinese herbal extracts and their fermentation broth have a significant beneficial effect on gut microbiota. This study aimed to investigate the probiotic effect of a self-designed Chinese herbs complex on the gut microbiota of rats exposed to cold. The rats were treated with intermittent cold exposure and Chinese herbs complex for 14 days, and the gut microbiota composition and other parameters were assayed. The 16s ribosomal DNA high-throughput sequencing and analysis confirmed that the Chinese herbs complex positively improved the gut microbiota. We found that cold exposure could lead to significant changes in the composition of gut microbiota, and affect the intestinal barrier and other physiological functions. The relative abundance of some probiotics in the genus such as Roseburia, Parasutterella, and Elusimicrobium in rats treated with Chinese herbs complex was significantly increased. Serum D-lactic acid (D-LA) and lipopolysaccharide (LPS) were increased in the cold exposure group and decreased in the Chinese herbs complex-treated group. Moreover, the Chinese herbs complex significantly increased the protein expression of occludin. In conclusion, the Chinese herbs complex is effective in restoring the gut microbiota caused by cold exposure, improving the function of the intestinal barrier, and may act as a prebiotic in combatting gut dysbiosis.

SELECTION OF CITATIONS
SEARCH DETAIL