Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Int J Mol Sci ; 24(12)2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37373374

ABSTRACT

Blister blight (BB) disease is caused by the obligate biotrophic fungal pathogen Exobasidium vexans Massee and seriously affects the yield and quality of Camellia sinensis. The use of chemical pesticides on tea leaves substantially increases the toxic risks of tea consumption. Botanic fungicide isobavachalcone (IBC) has the potential to control fungal diseases on many crops but has not been used on tea plants. In this study, the field control effects of IBC were evaluated by comparison and in combination with natural elicitor chitosan oligosaccharides (COSs) and the chemical pesticide pyraclostrobin (Py), and the preliminary action mode of IBC was also investigated. The bioassay results for IBC or its combination with COSs showed a remarkable control effect against BB (61.72% and 70.46%). IBC, like COSs, could improve the disease resistance of tea plants by enhancing the activity of tea-plant-related defense enzymes, including polyphenol oxidase (PPO), catalase (CAT), phenylalanine aminolase (PAL), peroxidase (POD), superoxide dismutase (SOD), ß-1,3-glucanase (Glu), and chitinase enzymes. The fungal community structure and diversity of the diseased tea leaves were examined using Illumina MiSeq sequencing of the internal transcribed spacer (ITS) region of the ribosomal rDNA genes. It was obvious that IBC could significantly alter the species' richness and the diversity of the fungal community in affected plant sites. This study broadens the application range of IBC and provides an important strategy for the control of BB disease.


Subject(s)
Camellia sinensis , Chalcones , Camellia sinensis/genetics , Disease Resistance/genetics , Chalcones/pharmacology , Tea , Plant Diseases/microbiology
2.
Int J Mol Sci ; 23(10)2022 May 13.
Article in English | MEDLINE | ID: mdl-35628277

ABSTRACT

Chitosan oligosaccharide (COS) plays an important role in the growth and development of tea plants. However, responses in tea plants trigged by COS have not been thoroughly investigated. In this study, we integrated transcriptomics and metabolomics analysis to understand the mechanisms of chitosan-induced tea quality improvement and growth promotion. The combined analysis revealed an obvious link between the flourishing development of the tea plant and the presence of COS. It obviously regulated the growth and development of the tea and the metabolomic process. The chlorophyll, soluble sugar, and amino acid content in the tea leaves was increased. The phytohormones, carbohydrates, and amino acid levels were zoomed-in in both transcript and metabolomics analyses compared to the control. The expression of the genes related to phytohormones transduction, carbon fixation, and amino acid metabolism during the growth and development of tea plants were significantly upregulated. Our findings indicated that alerted transcriptomic and metabolic responses occurring with the application of COS could cause efficiency in substrates in pivotal pathways and hence, elicited plant growth.


Subject(s)
Camellia sinensis , Chitosan , Amino Acids/metabolism , Camellia sinensis/metabolism , Chitosan/metabolism , Gene Expression Regulation, Plant , Metabolomics , Oligosaccharides/metabolism , Plant Growth Regulators/metabolism , Plant Leaves/metabolism , Plant Proteins/genetics , Tea/genetics , Tea/metabolism , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL