Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Affiliation country
Publication year range
1.
Am J Chin Med ; 51(8): 2175-2193, 2023.
Article in English | MEDLINE | ID: mdl-37930331

ABSTRACT

Andrographolide (AND) is a bioactive component of the herb Andrographis paniculata and a well-known anti-inflammatory agent. Atherosclerosis is a chronic inflammatory disease of the vasculature, and oxidized LDL (oxLDL) is thought to contribute heavily to atherosclerosis-associated inflammation. The aim of this study was to investigate whether AND mitigates oxLDL-mediated foam cell formation and diet-induced atherosclerosis (in mice fed a high-fat, high-cholesterol, high-cholic acid [HFCCD] diet) and the underlying mechanisms involved. AND attenuated LPS/oxLDL-mediated foam cell formation, IL-1[Formula: see text] mRNA and protein (p37) expression, NLR family pyrin domain containing 3 (NLRP3) mRNA and protein expression, caspase-1 (p20) protein expression, and IL-1[Formula: see text] release in BMDMs. Treatment with oxLDL significantly induced protein and mRNA expression of CD36, lectin-like oxLDL receptor-1 (LOX-1), and scavenger receptor type A (SR-A), whereas pretreatment with AND significantly inhibited protein and mRNA expression of SR-A only. Treatment with oxLDL significantly induced ROS generation and Dil-oxLDL uptake; however, pretreatment with AND alleviated oxLDL-induced ROS generation and Dil-oxLDL uptake. HFCCD feeding significantly increased aortic lipid accumulation, ICAM-1 expression, and IL-1[Formula: see text] mRNA expression, as well as blood levels of glutamic pyruvic transaminase (GPT), total cholesterol, and LDL-C. AND co-administration mitigated aortic lipid accumulation, the protein expression of ICAM-1, mRNA expression of IL-1[Formula: see text] and ICAM-1, and blood levels of GPT. These results suggest that the working mechanisms by which AND mitigates atherosclerosis involve the inhibition of foam cell formation and NLRP3 inflammasome-dependent vascular inflammation as evidenced by decreased SR-A expression and IL-1[Formula: see text] release, respectively.


Subject(s)
Atherosclerosis , Inflammasomes , Animals , Mice , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Intercellular Adhesion Molecule-1/metabolism , Reactive Oxygen Species/metabolism , Macrophages/metabolism , Lipoproteins, LDL , Foam Cells/metabolism , Receptors, Scavenger , Inflammation/metabolism , Cholesterol/metabolism , Atherosclerosis/drug therapy , Atherosclerosis/etiology , Atherosclerosis/metabolism , RNA, Messenger/metabolism , Interleukin-1/metabolism
2.
Phytomedicine ; 119: 154969, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37516088

ABSTRACT

BACKGROUND AND PURPOSE: Itch (pruritus) is a common unpleasant feeling, often accompanied by the urge of scratching the skin. It is the main symptom of many systemic and skin diseases, which can seriously affect the patient's quality of life. Geraniol (GE; trans-3,7-dimethyl-2,6-octadien-1-ol) is a natural monoterpene with diverse effects, including anti-inflammatory, antioxidant, neuroprotective, anti-nociceptive, and anticancer properties. The study aims to examine the effects of GE on acute and chronic itch, and explore the underlying mechanisms. METHODS: Acute itch was investigated by using Chloroquine and compound 48/80 induced model, followed by manifestation of diphenylcyclopropenone (DCP)-induced allergic contact dermatitis and the acetone-ether-water (AEW)-induced dry skin model in mice. The scratching behavior, skin thickness, c-Fos expression, and GRPR protein expression in the spinal cord were subsequently monitored and evaluated by behavioral tests as well as pharmacological and pharmacogenetic technologies. RESULTS: Dose-dependent intraperitoneal injection of GE alleviated the acute itch, induced by chloroquine and compound 48/80, as well as increased the spinal c-Fos expression. Intrathecal administration of GE suppressed the GABAA receptor inhibitor bicuculline-induced itch, GRP-induced itch, and the GABAergic neuron inhibition-induced itch. Furthermore, the subeffective dose of bicuculline blocked the anti-pruritic effect of GE on the chloroquine and compound 48/80 induced acute itch. GE also attenuated DCP and AEW-induced chronic itch, as well as the increase of spinal GRPR expression in DCP mice. CONCLUSION AND IMPLICATIONS: GE alleviates both acute and chronic itch via modulating the spinal GABA/GRPR signaling in mice. Findings of this study reveal that GE may provide promising therapeutic options for itch management. Also, considering the pivotal role of essential oils in aromatherapy, GE has great application potential in aromatherapy for treating skin diseases, and especially the skin with severe pruritus.


Subject(s)
Antipruritics , Quality of Life , Mice , Animals , Antipruritics/adverse effects , Gastrin-Releasing Peptide/metabolism , Gastrin-Releasing Peptide/pharmacology , Bicuculline/adverse effects , Bicuculline/metabolism , Pruritus/chemically induced , Pruritus/drug therapy , Spinal Cord , Chloroquine/pharmacology , gamma-Aminobutyric Acid/metabolism
3.
Am J Chin Med ; 51(1): 129-147, 2023.
Article in English | MEDLINE | ID: mdl-36419253

ABSTRACT

Andrographolide is the major bioactive component of the herb Andrographis paniculata and is a potent anti-inflammatory agent. Obesity leads to an excess of free fatty acids, particularly palmitic acid (PA), in the circulation. Obesity also causes the deposition of ectopic fat in nonadipose tissues, which leads to lipotoxicity, a condition closely associated with inflammation. Here, we investigated whether andrographolide could inhibit PA-induced inflammation by activating autophagy, activating the antioxidant defense system, and blocking the activation of the NLRP3 inflammasome. Bone marrow-derived macrophages (BMDMs) were primed with lipopolysaccharide (LPS) and then activated with PA. LPS/PA treatment increased both the mRNA expression of NLRP3 and IL-1[Formula: see text] and the release of IL-1[Formula: see text] in BMDMs. Andrographolide inhibited the LPS/PA-induced protein expression of caspase-1 and the release of IL-1[Formula: see text]. Furthermore, andrographolide attenuated LPS/PA-induced mtROS generation by first promoting autophagic flux and catalase activity, and ultimately inhibiting activation of the NLRP3 inflammasome. Our results suggest that the mechanisms by which andrographolide downregulates LPS/PA-induced IL-1[Formula: see text] release in BMDMs involve promoting autophagic flux and catalase activity. Andrographolide may thus be a candidate to prevent obesity- and lipotoxicity-driven chronic inflammatory disease.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Mice , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Lipopolysaccharides/adverse effects , Catalase/metabolism , Macrophages/metabolism , Inflammation/metabolism , Antioxidants/metabolism , Interleukin-1/metabolism , Mice, Inbred C57BL
4.
Am J Chin Med ; 49(6): 1473-1491, 2021.
Article in English | MEDLINE | ID: mdl-34240660

ABSTRACT

14-Deoxy-11,12-didehydroandrographolide (deAND), a bioactive component of Andrographis paniculata, has antidiabetic activity. AMP-activated protein kinase (AMPK) regulates glucose transport and ameliorates insulin resistance. The aim of the present study was to investigate whether activation of AMPK is involved in the mechanism by which deAND ameliorates insulin resistance in muscles. deAND amounts up to 40 [Formula: see text]M dose-dependently activated phosphorylation of AMPK[Formula: see text] and TBC1D1 in C2C12 myotubes. In addition, deAND significantly activated phosphorylation of LKB1 at 6 h after treatment, and this activation was maintained up to 48 h. deAND increased glucose uptake at 18 h after treatment, and this increase was time dependent up to 72 h. Compound C, an inhibitor of AMPK, suppressed deAND-induced phosphorylation of AMPK[Formula: see text] and TBC1D1 and reversed the effect on glucose uptake. In addition, the expression of GLUT4 mRNA and protein in C2C12 myotubes was up-regulated by deAND in a time-dependent manner. Promotion of GLUT4 gene transcription was verified by a pGL3-GLUT4 (837 bp) reporter assay. deAND also increased the nuclear translocation of MEF-2A and PPAR[Formula: see text]. After 16 weeks of feeding, the high-fat diet (HFD) inhibited phosphorylation of AMPK[Formula: see text] and TBC1D1 in skeletal muscle of obese C57BL/6JNarl mice, and deactivation of AMPK[Formula: see text] and TBC1D1 by the HFD was abolished by deAND supplementation. Supplementation with deAND significantly promoted membrane translocation of GLUT4 compared with the HFD group. Supplementation also significantly increased GLUT4 mRNA and protein expression in skeletal muscle compared with the HFD group. The hypoglycemic effects of deAND are likely associated with activation of the LKB1/AMPK[Formula: see text]/TBC1D1/GLUT4 signaling pathway and stimulation of MEF-2A- and PPAR[Formula: see text]-dependent GLUT4 gene expression, which account for the glucose uptake into skeletal muscle and lower blood glucose levels.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Diterpenes/pharmacology , GTPase-Activating Proteins/metabolism , Glucose Intolerance/drug therapy , Glucose Transporter Type 4/drug effects , Muscle Fibers, Skeletal/drug effects , Protein Serine-Threonine Kinases/metabolism , Animals , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Mice, Obese
5.
Am J Chin Med ; 48(5): 1073-1090, 2020.
Article in English | MEDLINE | ID: mdl-32668968

ABSTRACT

Pro-inflammatory cytokines interfere with blood glucose homeostasis, which leads to hyperglycemia. Andrographis paniculata (AP) has been shown to possess anti-inflammatory activity and to reduce blood glucose levels in diabetes. The two major bioactive diterpenoids in AP, andrographolide (AND) and 14-deoxy-11,12-didehydroandrographolide (deAND), have potent anti-inflammatory activity. We studied whether APE (an ethanolic extract of AP), AND, and deAND could improve a high-fat diet (HFD)-induced hyperglycemia in vivo and TNF[Formula: see text]-induced impairment of insulin signaling in vitro. Male C57BL/6JNarl mice were fed a normal diet (ND) or the HFD, and the fatty mice were treated with APE, deAND, or AND for 16 weeks. 3T3-L1 cells were used to study the underlying mechanisms by which APE, deAND, or AND attenuated TNF[Formula: see text]-induced insulin resistance. The HFD significantly induced obesity, hyperglycemia, insulin resistance, and inflammation, whereas APE and deAND significantly ameliorated HFD-induced obesity, hyperglycemia, insulin resistance, and TNF[Formula: see text] production. The HFD significantly impaired insulin signaling by decreasing the protein expression of p-IRS1 tyr632 and p-AKT ser473, as well as the membrane translocation of GLUT4 in response to insulin stimulation in epididymal adipose tissue. HFD-impaired the membrane translocation of GLUT4 was significantly reversed by deAND and APE. In addition, deAND and APE markedly reversed the detrimental effect of TNF[Formula: see text] on the insulin signaling pathway and glucose uptake in 3T3-L1 cells. Despite no significant positive effect on p-AS160, a trend for recovery by deAND and APE was observed. These results suggest that deAND and APE protect against HFD-induced insulin resistance by ameliorating inflammation-driven impairment of insulin sensitivity.


Subject(s)
Andrographis/chemistry , Diet, High-Fat/adverse effects , Insulin Resistance , Obesity/metabolism , Plant Extracts/pharmacology , 3T3 Cells , Andrographis paniculata , Animals , Glucose Transporter Type 4/metabolism , Mice , Mice, Inbred C57BL , Obesity/drug therapy , Obesity/etiology , Phytotherapy , Plant Extracts/therapeutic use , Tumor Necrosis Factor-alpha/metabolism
6.
Phytomedicine ; 61: 152841, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31035043

ABSTRACT

BACKGROUND: 14-Deoxy-11,12-didehydroandrographolide (deAND) is the second most abundant diterpenoid in Andrographis paniculata (Burm. f.) Nees, a traditional medicine used in Asia. To date, the biological activity of deAND has not been clearly investigated. PURPOSE: In this study, we intended to examine the modulatory effect of deAND on hepatic drug metabolism as well as its bioavailability. STUDY DESIGN: deAND prepared from A. paniculata was orally given to Sprague-Dawley rats and changes in plasma deNAD were determined by HPLC-MS. Modulation of deAND on drug-metabolizing enzyme and drug transporter expression as well as the possible mechanism involved was examined in primary rat hepatocytes. RESULTS: After a single oral administration of 50 mg/kg deAND to rats, the maximum plasma concentration (Cmax), time to reach the Cmax, area under the curve (AUC0-24h), mean retention time, and half-life (t1/2) of deAND were 2.65 ± 0.68 µg/ml, 0.29 ± 0.15 h, 6.30 ± 1.66 µg/ml•h, 5.55 ± 2.52 h, and 3.56 ± 1.05 h, respectively. The oral bioavailability was 3.42%. In primary rat hepatocytes treated with up to 10 µM deAND, a dose-dependent increase was noted in the expression of cytochrome P450 (CYP) 1A1/2, CYP2C6, and CYP3A1/2; UDP-glucuronosyltransferase (UGT) 1A1, NAD(P)H:quinone oxidoreductase (NQO1), π form of GSH S-transferase (GSTP), multidrug resistance-associated protein 2, p-glycoprotein, and organic anion transporter protein 2B1. Immunoblotting assay and EMSA revealed that deAND increases the nuclear translocation and DNA binding activity of aryl hydrocarbon receptor (AhR), pregnane X receptor (PXR), and nuclear factor erythroid-derived 2-related factor 2 (Nrf2). Knockdown of AhR and Nrf2 expression abolished deAND induction of CYP isozymes and UGT1A1, NQO1, and GSTP expression, respectively. CONCLUSION: These results indicate that deAND quickly passes through enterocytes in rats and effectively up-regulates hepatic drug-metabolizing enzyme and drug transporter expression in an AhR-, PXR-, and Nrf2-dependent manner.


Subject(s)
Diterpenes/pharmacokinetics , Enzymes/metabolism , Hepatocytes/drug effects , Administration, Oral , Andrographis/chemistry , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Biological Availability , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Diterpenes/administration & dosage , Diterpenes/blood , Enzymes/genetics , Glucuronosyltransferase/genetics , Glucuronosyltransferase/metabolism , Hepatocytes/physiology , Inactivation, Metabolic/drug effects , Liver/drug effects , Liver/enzymology , Liver/metabolism , Male , NAD(P)H Dehydrogenase (Quinone)/genetics , NAD(P)H Dehydrogenase (Quinone)/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Organic Anion Transporters/genetics , Organic Anion Transporters/metabolism , Rats, Sprague-Dawley , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Up-Regulation/drug effects
7.
Phytomedicine ; 52: 157-167, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30599895

ABSTRACT

BACKGROUND: Andrographis paniculata (A. paniculata), a traditional herb in Southeastern Asia, is used to treat inflammation-mediated diseases. PURPOSE: The two major bioactive diterpenoids in A. paniculata are andrographolide (AND) and 14-deoxy-11,12-didehydroandrographolide (deAND). Because of the anti-inflammatory evidence for AND, we hypothesized that deAND might possess similar potency for inhibiting monocyte adhesion to the vascular endothelium, which is a critical event for atherosclerotic lesion formation. MATERIAL: In the present study, we used 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay to determine cell viability. We evaluated the production of intracellular reactive oxygen species (ROS) by using DCFDA assay. We assayed the protein expression by using Western blot analysis, the mRNA expression by using RT-PCR, and the nuclear protein-DNA binding activity by using EMSA. RESULTS: We showed that pretreatment of EA.hy926 cells with A. paniculata ethanolic extract (APE), deAND, and AND significantly inhibited TNFα-induced ICAM-1 protein and mRNA expression, ICAM-1 promoter activity, and monocyte adhesion. TNFα-stimulated IKKß phosphorylation, IκBα phosphorylation and degradation, p65 nuclear translocation, and NFκB nuclear protein-DNA binding activity were attenuated by pretreatment with APE, deAND, and AND. APE, deAND, and AND attenuated TNFα-induced Src phosphorylation and membrane translocation of the NOX subunits p47phox and p67phox. Both APE and AND induced protein expression of heme oxygenase 1 and the glutamate cysteine ligase modifier subunit and enhanced glutathione content. Pretreatment with AND and deAND inhibited TNFα-induced ROS generation. CONCLUSION: These results suggest that the mechanism by which APE, deAND, and AND down-regulates TNFα-induced ICAM-1 expression in EA.hy926 cells is via attenuation of activation of the IKK/IκB/NFκB pathway.


Subject(s)
Andrographis/chemistry , Diterpenes/pharmacology , Intercellular Adhesion Molecule-1/metabolism , Plant Extracts/pharmacology , Cell Line , Glutamate-Cysteine Ligase/metabolism , Heme Oxygenase-1/metabolism , Humans , I-kappa B Kinase/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction , Transcription Factor RelA/metabolism , Tumor Necrosis Factor-alpha/pharmacology
8.
J Food Sci ; 83(5): 1463-1469, 2018 May.
Article in English | MEDLINE | ID: mdl-29693723

ABSTRACT

The content of several phenolic acids and flavonoids in aqueous extract (AE) and ethanol extract (EE) of daylily flower (Hemerocallis fulva L.) was analyzed. The effects of AE or EE at 0.5%, 1%, or 2% in HUVE cells against high glucose-induced cell death, oxidative, and inflammatory damage were examined. Results showed that seven phenolic acids and seven flavonoids could be detected in AE or EE, in the range of 29 to 205 and 41 to 273 mg/100 g, respectively. Compared with the control groups, high glucose raised the activity of caspase-3 and caspase-8; suppressed Bcl-2 mRNA expression and increased Bax mRNA expression; and induced HUVE cells apoptosis. The pretreatments from AE or EE at 1% or 2% reduced caspase-3 activity and Bax mRNA expression, and enhanced cell viability. High glucose decreased glutathione content; stimulated the production of reactive oxygen species, interleukin-6, tumor necrosis factor-alpha, and prostaglandin E2 ; raised the activity of cyclooxygenase-2 and nuclear factor kappa B p50/65 binding; and reduced the activity of glutathione peroxidase, glutathione reductase, and catalase in HUVE cells. AE pretreatments at 1% and 2% reversed these changes. These novel findings suggested that daylily flower was rich in phytochemicals, and could be viewed as a potent functional food against diabetes.


Subject(s)
Flowers/chemistry , Hemerocallis/chemistry , Plant Extracts/pharmacology , Protective Agents/pharmacology , Antioxidants/analysis , Antioxidants/pharmacology , Apoptosis/drug effects , Caspase 3/metabolism , Caspase 8/metabolism , Catalase/antagonists & inhibitors , Catalase/metabolism , Cell Survival/drug effects , Cells, Cultured , Cyclooxygenase 2/metabolism , Dinoprostone/metabolism , Flavonoids/analysis , Flavonoids/pharmacology , Glucose/adverse effects , Glutathione Peroxidase/antagonists & inhibitors , Glutathione Peroxidase/metabolism , Glutathione Reductase/antagonists & inhibitors , Glutathione Reductase/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Interleukin-6/metabolism , NF-kappa B/metabolism , Plant Extracts/analysis , Protective Agents/analysis , Reactive Oxygen Species/metabolism , Tumor Necrosis Factor-alpha/metabolism
9.
Am J Chin Med ; 46(1): 87-106, 2018.
Article in English | MEDLINE | ID: mdl-29298513

ABSTRACT

oxLDL is involved in the pathogenesis of atherosclerotic lesions through cholesterol accumulation in macrophage foam cells. Andrographolide, the bioactive component of Andrographis paniculata, possesses several biological activities such as anti-inflammatory, anti-oxidant, and anticancer functions. Scavenger receptors (SRs), including class A SR (SR-A) and CD36, are responsible for the internalization of oxLDL. In contrast, receptors for reverse cholesterol transport, including ABCA1 and ABCG1, mediate the efflux of cholesterol from macrophage foam cells. Transcription factor liver X receptor [Formula: see text] (LXR[Formula: see text] plays a key role in lipid metabolism and inflammation as well as in the regulation of ABCA1 and ABCG1 expression. Because of the contribution of inflammation to macrophage foam cell formation and the potent anti-inflammatory activity of andrographolide, we hypothesized that andrographolide might inhibit oxLDL-induced macrophage foam cell formation. The results showed that andrographolide reduced oxLDL-induced lipid accumulation in macrophage foam cells. Andrographolide decreased the mRNA and protein expression of CD36 by inducing the degradation of CD36 mRNA; however, andrographolide had no effect on SR-A expression. In contrast, andrographolide increased the mRNA and protein expression of ABCA1 and ABCG1, which were dependent on LXR[Formula: see text]. Andrographolide enhanced LXR[Formula: see text] nuclear translocation and DNA binding activity. Treatment with the LXR[Formula: see text] antagonist GGPP and transfection with LXR[Formula: see text] siRNA reversed the ability of andrographolide to stimulate ABCA1 and ABCG1 protein expression. In conclusion, inhibition of CD36-mediated oxLDL uptake and induction of ABCA1- and ABCG1-dependent cholesterol efflux are two working mechanisms by which andrographolide inhibits macrophage foam cell formation, which suggests that andrographolide could be a potential candidate to prevent atherosclerosis.


Subject(s)
Andrographis/chemistry , Cholesterol/metabolism , Diterpenes/pharmacology , Foam Cells/metabolism , Lipoproteins, LDL/adverse effects , ATP Binding Cassette Transporter 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 1/metabolism , Animals , Anti-Inflammatory Agents , Antineoplastic Agents, Phytogenic , Antioxidants , Atherosclerosis/etiology , Biological Transport/genetics , CD36 Antigens/genetics , CD36 Antigens/metabolism , Cell Line , Gene Expression/drug effects , Liver X Receptors/physiology , Mice , RNA, Messenger/metabolism , Receptors, Scavenger/physiology
10.
Environ Toxicol ; 32(3): 918-930, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27297870

ABSTRACT

Andrographolide, the main bioactive component of the medicinal plant Andrographis paniculata, has been shown to possess potent anti-inflammatory activity. Endothelin 1 (ET-1), a potent vasoconstrictor peptide produced by vascular endothelial cells, displays proinflammatory property. Hypoxia-inducible factor 1α (HIF-1α), the regulatory member of the transcription factor heterodimer HIF-1α/ß, is one of the most important molecules that responds to hypoxia. Changes in cellular HIF-1α protein level are the result of altered gene transcription and protein stability, with the latter being dependent on prolyl hydroxylases (PHDs). In this study, inhibition of pro-inflammatory ET-1 expression and changes of HIF-1α gene transcription and protein stability under hypoxia by andrographolide in EA.hy926 endothelial-like cells were investigated. Hypoxic conditions were created using the hypoxia-mimetic agent CoCl2. We found that hypoxia stimulated the production of reactive oxygen species (ROS), the expression of HIF-1α mRNA and protein, and the expression and secretion of ET-1. These effects, however, were attenuated by co-exposure to andrographolide, bilirubin, and RuCO. Silencing Nrf2 and heme oxygenase 1 (HO-1) reversed the inhibitory effects of andrographolide on hypxoia-induced HIF-1α mRNA and protein expression. Moreover, andrographolide increased the expression of prolyl hydroxylases (PHD) 2/3, which hydroxylate HIF-1α and promotes HIF-1α proteasome degradation, with an increase in HIF-1α hydroxylation was noted under hypoxia. Inhibition of p38 MAPK abrogated the hypoxia-induced increases in HIF-1α mRNA and protein expression as well as ET-1 mRNA expression and secretion. Taken together, these results suggest that andrographolide suppresses hypoxia-induced pro-inflammatory ET-1 expression by activating Nrf2/HO-1, inhibiting p38 MAPK signaling, and promoting PHD2/3 expression. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 918-930, 2017.


Subject(s)
Diterpenes/pharmacology , Endothelin-1/metabolism , Heme Oxygenase-1/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , NF-E2-Related Factor 2/metabolism , Prolyl Hydroxylases/metabolism , Cell Hypoxia , Cell Line , Cell Survival/drug effects , Cobalt/toxicity , Endothelial Cells/cytology , Endothelial Cells/metabolism , Endothelin-1/genetics , Heme Oxygenase-1/antagonists & inhibitors , Heme Oxygenase-1/genetics , Humans , Hydroxylation , NF-E2-Related Factor 2/antagonists & inhibitors , NF-E2-Related Factor 2/genetics , Prolyl Hydroxylases/genetics , RNA Interference , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL