Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
J Sep Sci ; 45(24): 4348-4363, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36200749

ABSTRACT

Fructus Corni has been reported to contain a wide variety of pharmacological effects and previous studies had revealed that Fructus Corni might protect the cardiac indices. However, the all-encompassing metabolic profile of Fructus Corni has not been well illuminated. In this research, high-sensitivity ultra-performance liquid chromatography with quadrupole time-of-flight mass spectrometry method was adopted to identify the metabolic profile after oral administration of Fructus Corni extract, especially the metabolic characterization of serum and heart, for which the targets and signaling pathways about heart failure were hunted through compound-target-disease-pathway intersection network. Ultimately, 37 ingredients were identified in Fructus Corni extract, and 22 prototypes and 134 metabolites that were identified in serum, heart, feces, and urine were tentatively characterized, which contained iridoids, flavonoids, tannins, organic acids, and others. Additionally, 10 putative key compounds including four prototypes and six phase I metabolites were screened by network pharmacology and molecular docking, among which, secoxyloganin (P7), loganin (P14), cornuside III (P17) and cornuside (P20) were the absorbed compounds to represent the potential active ingredients of Fructus Corni engaged in heart failure condition. In general, this method provided the combined strategy to preliminarily settle the complex of Fructus Corni's metabolic profiling and anti-heart failure pharmacologic activities.


Subject(s)
Cornus , Drugs, Chinese Herbal , Cornus/chemistry , Molecular Docking Simulation , Network Pharmacology , Chromatography, High Pressure Liquid/methods , Mass Spectrometry/methods , Metabolome , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/analysis
2.
Front Chem ; 10: 924685, 2022.
Article in English | MEDLINE | ID: mdl-35910719

ABSTRACT

Licorice is well known for its ability to reduce the toxicity of the whole prescription in traditional Chinese medicine theory. However, honey-fired licorice (ZGC for short), which is made of licorice after being stir-fried with honey water, is more commonly used for clinical practice. The metabolism in vivo and detoxification-related compounds of ZGC have not been fully elucidated. In this work, the chemical constituents in ZGC and its metabolic profile in rats were both identified by high ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). The network pharmacology was applied to predict the potential detoxifying ingredients of ZGC. As a result, a total of 115 chemical compounds were identified or tentatively characterized in ZGC aqueous extract, and 232 xenobiotics (70 prototypes and 162 metabolites) were identified in serum, heart, liver, kidneys, feces, and urine. Furthermore, 41 compounds absorbed in serum, heart, liver, and kidneys were employed for exploring the detoxification of ZGC by network pharmacology. Ultimately, 13 compounds (five prototypes including P5, P24, P30, P41 and P44, and 8 phase Ⅰ metabolites including M23, M47, M53, M93, M100, M106, M118, and M134) and nine targets were anticipated to be potential mediums regulating detoxification actions. The network pharmacology analysis had shown that the ZGC could detoxify mainly through regulating the related targets of cytochrome P450 and glutathione. In summary, this study would help reveal potential active ingredients in vivo for detoxification of ZGC and provided practical evidence for explaining the theory of traditional Chinese medicine with modern technology.

3.
Phytochem Anal ; 30(1): 26-33, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30159954

ABSTRACT

INTRODUCTION: Previous studies have demonstrated that several ginsenosides have remarkable inhibitory effect on acetylcholinesterase (AChE). In the present study, ginseng stem-leaf saponins (GSLS) can improve learning and memory of Alzheimer's disease patients. However, much comprehensive information regarding AChE inhibition of GSLS and its metabolites is yet unknown. OBJECTIVE: The present study aims to screen and determine the potential of AChE inhibitors (AChEIs) from GSLS. METHODOLOGY: The active fraction of the GSLS detected in vitro AChE inhibition assays was selected as a starting material for the screening of the potential of AChEIs using ultrafiltration liquid chromatography coupled to electrospray ionisation tandem mass spectrometry (UF-LC-ESI-MS2 ). RESULTS: The results showed that 31 ginsenosides were identified with analysis using rapid resolution liquid chromatography with a diode array detector combined with electrospray ionisation tandem mass spectrometry (RRLC-DAD-ESI-MS2 ) from the active fraction, and there are 27 compounds with AChE binding activity. Among them, 11 ginsenosides were evaluated and confirmed using in vitro enzymatic assay, and ginsenosides F1 , Rd, Rk3 , 20(S)-Rg3 , F2 and Rb2 were found to possess strong AChE inhibitory activities. CONCLUSION: The proposed UF-LC-ESI-MS2 method was a powerful tool for the discovery of AChEIs from traditional Chinese medicine (TCM).


Subject(s)
Acetylcholinesterase/drug effects , Cholinesterase Inhibitors/analysis , Cholinesterase Inhibitors/pharmacology , Chromatography, Liquid/methods , Panax/chemistry , Plant Leaves/chemistry , Plant Stems/chemistry , Saponins/analysis , Saponins/pharmacology , Spectrometry, Mass, Electrospray Ionization/methods , Ultrafiltration/methods , Feasibility Studies , Protein Binding , Tandem Mass Spectrometry/methods
4.
Pharmacogn Mag ; 14(54): 248-252, 2018.
Article in English | MEDLINE | ID: mdl-29720840

ABSTRACT

BACKGROUND: At present, approximately 17-25 million people in the world suffer from Alzheimer's disease (AD). The most efficacious and acceptable therapeutic drug clinically are the acetylcholinesterase inhibitors (AChEIs). Yinhuang oral liquid is a Chinese medicine preparation which contains AChEIs according to the literatures. However, no strategy has been presented for rapid screening and identification of AChEIs from Yinhuang oral liquid. OBJECTIVE: To develop a method for rapid screening and identification of AChEIs from Yinhuang oral liquid using ultrafiltration-liquid chromatography-electrospray ionization tandem mass spectrometry (UF-LC-ESI-MS/MS). MATERIALS AND METHODS: In this study, UF incubation conditions such as enzyme concentration, incubation time, and incubation temperature were optimized so as to get better screening results. The AChEIs from Yinhuang oral liquid were identified by high-performance liquid chromatography-ESI-MS and the improved Ellman method was used for the AChE inhibitory activity test in vitro. RESULTS: The results showed that Yinhuang oral liquid can inhibit the activity of AChE. We screened and identified seven compounds with potential AChE inhibitory activity from Yinhuang oral liquid, which provided experimental basis for the treatment and prevention of AD. CONCLUSION: The current technique was used to directly screen the active ingredients with acetylcholinesterase inhibition from complex traditional Chinese medicine, which was simple, rapid, accurate, and suitable for high-throughput screening of AChEI from complex systems. SUMMARY: A UF-LC-ESI-MS/MS method for rapid screening and identification of AChEIs from Yinhuang oral liquid was developedSeven compounds were screened and identified with potential AChE inhibitory activity from Yinhuang oral liquidIt provided experimental basis of Yinhuang oral liquid for the treating and preventing AD. Abbreviations used: (AD): Alzheimer's disease; (UF-LC-ESI-MS/MS): ultrafiltration-liquid chromatography-electrospray ionization tandem mass spectrometry; (AChEIs): acetylcholinesterase inhibitors.

SELECTION OF CITATIONS
SEARCH DETAIL