Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Water Sci Technol ; 88(1): 62-74, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37452534

ABSTRACT

Efficient degradation of uranium(VI) (U(VI)) in wastewater is an urgent problem because of the chemical toxicity and radiotoxicity. In this study, the Agx-SnS2 photocatalysts were compounded by a simple hydrothermal method, effectively removing U(VI) under visible light in water. Compared with SnS2, the results indicated that Agx-SnS2 would decrease the crystallinity without destroying the crystal structure. Moreover, it has excellent photocatalytic performance on the degradation rate of U(VI). Ag0.5-SnS2 exhibited a prominent photocatalytic reduction efficiency of UO22+ of about 86.4% under optical light for 75 min. This was attributed to Ag-doped catalysts, which can narrow the band gap and enhance absorption in visible light. Meanwhile, the doping of Ag promoted the separation of photoinduced carriers, so that more photogenerated charges participated in the photocatalytic reaction. The stability and reusability were verified by the cycle test and the potential photocatalytic mechanism was analyzed based on the experiment.


Subject(s)
Light , Uranium , Catalysis , Uranium/chemistry , Wastewater
2.
Brain Connect ; 11(2): 119-131, 2021 03.
Article in English | MEDLINE | ID: mdl-33317410

ABSTRACT

Background: The thalamus, as a key relay of neuronal information flow between subcortical structures and cortical networks, has been implicated in focal limbic seizures propagation, awareness maintenance, and seizure-related cognitive deficits. However, the specific functional alterations between different thalamic nuclei and subcortical-cortical systems in temporal lobe epilepsy (TLE) remain largely unknown. Methods: We examined thalamic functional connectivity (FC) in 26 TLE patients and 30 healthy controls matched for sex, age, and education. The anterior (ANT), ventral posterior medial, and central lateral nuclei of thalamus were employed to establish whole-brain seed-to-voxel thalamic FC maps. Secondary Pearson's correlation analysis was conducted to assess associations between the abnormal thalamic FC and the memory performance in TLE. Results: Seed-based FC analyses revealed typical distinct FC patterns within each thalamic nuclei in both controls and TLE patients. The TLE showed significantly decreased FC between different thalamic nuclei and subcortical-cortical networks, including the limbic structures, midbrain, sensorimotor network, medial prefrontal cortex, temporal-occipital fusiform gyrus, and cerebellum. Verification analyses yielded similar patterns of thalamic FC changes in TLE. Importantly, the decreased FC between the ANT and hippocampal pathway was correlated with the poorer memory performance of TLE. Conclusion: These findings suggest that the distinct thalamocortical FC patterns are damaged to some extent in TLE patients. Importantly, the specific pathology of the ANT-hippocampal pathway in TLE may be a potential factor that contributes to memory deficits. Our study may pave the way for improved treatments and cognitive function by directly targeting different thalamocortical circuits for TLE.


Subject(s)
Epilepsy, Temporal Lobe , Brain , Epilepsy, Temporal Lobe/diagnostic imaging , Humans , Magnetic Resonance Imaging , Thalamic Nuclei , Thalamus/diagnostic imaging
3.
Planta ; 252(2): 31, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32740680

ABSTRACT

MAIN CONCLUSION: Four polygalacturonase gene family members were highlighted that contribute to elucidate the roles of polygalacturonase during the fertility conversion process in male-sterile wheat. Polygalacturonase (PG) belongs to a large family of hydrolases with important functions in cell separation during plant growth and development via the degradation of pectin. Specific expressed PGs in anthers may be significant for male sterility research and hybrid wheat breeding, but they have not been characterized in wheat (Triticum aestivum L.). In this study, we systematically studied the PG gene family using the latest published wheat reference genomic information. In total, 113 wheat PG genes were identified, which could be classified into six categories A-F according to their structure characteristics and phylogenetic comparisons with Arabidopsis and rice. Polyploidy and segmental duplications in wheat were proved to be mainly responsible for the expansion of the wheat PG gene family. RNA-seq showed that TaPGs have specific temporal and spatial expression characteristics, in which 12 TaPGs with spike-specific expression patterns were detected by qRT-PCR in different fertility anthers of KTM3315A, a thermo-sensitive cytoplasmic male-sterile wheat. Four of them specific upregulated (TaPG09, TaPG95, and TaPG93) or downregulated (TaPG87) at trinucleate stage of fertile anthers, and further aligning with the homologous in Arabidopsis revealed that they may undertake functions such as anther dehiscence, separation of pollen, pollen development, and pollen tube elongation, thereby inducing male fertility conversion in KTM3315A. These findings facilitate function investigations of the wheat PG gene family and provide new insights into the fertility conversion mechanism in male-sterile wheat.


Subject(s)
Multigene Family , Pollen/enzymology , Pollen/genetics , Polygalacturonase/genetics , Triticum/enzymology , Triticum/physiology , Amino Acid Motifs , Amino Acid Sequence , Conserved Sequence , Evolution, Molecular , Fertility , Gene Duplication , Gene Expression Regulation, Plant , Gene Ontology , Molecular Sequence Annotation , Organ Specificity/genetics , Phylogeny , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Polygalacturonase/chemistry , Polygalacturonase/metabolism , Polyploidy , Regulatory Sequences, Nucleic Acid/genetics , Synteny/genetics , Triticum/genetics
4.
Chemosphere ; 260: 127548, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32688312

ABSTRACT

A novel Ag-doped SnS2@InVO4 composite was successfully synthesized for efficient uranium removal from wastewater through a facile hydrothermal method. The structure, morphology and optical property of materials were characterized using various instruments. The results proved that Ag-doped SnS2@InVO4 composite presented as hexangular nanosheets with about 4.87 nm pore size and 101.58 m2/g specific surface area. Further characterization demonstrated that photo-adsorption ability of visible light was enhanced and band gap was narrowed. The adsorption kinetics and isotherm of U(VI) on Ag-doped SnS2@InVO4 composite could be depicted via the Langmuir model and pseudo-second-order mode, and the maximum adsorption capacity of U(VI) reached 167.79 mg/g. The elimination of U(VI) of as-synthesized composites was studied by a synergy of adsorption and visible-light photocatalysis, and the optimal content of InVO4 was found to be 2 wt% with the highest removal efficiency of 97.6%. In addition, compared with pure SnS2 and Ag-doped SnS2, the Ag-doped SnS2@InVO4 composites exhibited superior photocatalytic performance for the conversion of soluble U(VI) to insoluble U(IV) under visible light. The excellent photocatalytic performance was mainly attributed to numerous surface-active sites, strong optical adsorption ability and narrow band gap. Simultaneously, the heterojunction between Ag-doped SnS2 and InVO4 promoted the separation and transfer of photoexcited charges. The cyclic experiments indicated the Ag-doped SnS2@InVO4 composite remained good structural stability and reusability. Finally, the possible mechanism was discussed based on the experimental analysis.


Subject(s)
Uranium/chemistry , Adsorption , Catalysis , Light , Silver , Wastewater
5.
Environ Pollut ; 247: 165-171, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30669084

ABSTRACT

The frequent outbreaks of cyanobacteria bloom are often accompanied by the generation and release of reduced phosphorus species (e.g., phosphine), which raises interesting questions regarding their potential algae-related effects. To clarify the physiological and biochemical responses of cyanobacteria to phosphine, Microcystis aeruginosa was treated with different concentrations of phosphine. Net photosynthetic rate, total antioxidant capacity (T-AOC), catalase (CAT) activity, and the concentrations of chlorophyll a, carotenoid and total protein were investigated and scanning electron microscopy (SEM) was conducted to elucidate the physiological and biochemical responses of M. aeruginosa to phosphine. The results showed that phosphine was beneficial to the growth of algal cells after M. aeruginosa acclimatized to the treatment of phosphine, and treatment with 2.48 × 10-2 mg/L phosphine had a greater positive effect on the growth and reproduction of M. aeruginosa than 7.51 × 10-3 mg/L phosphine, in which most algal cells were smooth and flat on day 16. Treatment with the high concentration of phosphine (7.51 × 10-2 mg/L) for 16 d reduced T-AOC, CAT activity, net photosynthetic rate, and the concentrations of chlorophyll a, carotenoid and total protein of M. aeruginosa to the minimums, resulting in the lysis and death of M. aeruginosa cells, which indicates phosphine has a toxic effect on the growth of algal cells. However, the high concentration of phosphine (7.51 × 10-2 mg/L) had a greater positive effect on the growth of M. aeruginosa cells than the lower two (7.51 × 10-3 mg/L and 2.48 × 10-2 mg/L) from 3 d to 12 d. Our findings provide insight into how phosphine potentially affects the growth of M. aeruginosa cells and the important roles of elevated phosphine on the outbreak of cyanobacteria bloom.


Subject(s)
Microcystis/drug effects , Microcystis/growth & development , Phosphines/toxicity , Carotenoids , Chlorophyll/metabolism , Chlorophyll A , Cyanobacteria/metabolism , Oxidation-Reduction , Phosphorus/metabolism , Photosynthesis/drug effects
6.
Chemosphere ; 212: 114-123, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30144672

ABSTRACT

Visible light-driven conversion of soluble U(VI) to slightly soluble U(IV) has been regarded as a efficient and environmentally friendly technology to deal with uranium containing wastewater. In this paper, we attempted to use photocatalytic technology to reduction U(VI) from aqueous solution by constructing a highly efficient photocatalysts. The novel Sn-doped In2S3 microspheres photocatalyst were synthesized for the first time by a simple hydrothermal method, and characterized with various analytical and spectroscopic techniques to determine their structural, morphological, compositional, optical and photocatalytic properties. In determination of photocatalytic activity, the results showed that all Sn-doped In2S3 samples exhibited greater photocatalytic performance in reduction of U(VI) under visible light than the pure In2S3. The optimum SnIn2S3 photocatalyst with Sn:In molar ratio of 1:4.8 (SnIn2S3) had the highest photocatalytic performance (95% reduction efficiency within 40 min irradiation time), which was approximately 15.60 times faster than that of pure In2S3. The enhanced photocatalytic activity of the optimum SnIn2S3 was largely ascribed to the higher specific surface area, red-shift in the absorption band, the efficient separation of photogenerated electron-hole pairs (e-/h+) and the narrowed band gap with an up shifting of valence band, conduction band potentials. In addition the optimum SnIn2S3 photocatalyst exhibited a good recyclability and stability during the repetitive experiments. Finally, the possible active species and the possible mechanism on basis of the experimental results were discussed in detail.


Subject(s)
Indium/chemistry , Light , Sulfur/chemistry , Tin/chemistry , Uranium/chemistry , Water Pollutants, Chemical/isolation & purification , Catalysis , Microspheres , Uranium/isolation & purification , Water Pollutants, Chemical/chemistry
7.
Environ Pollut ; 239: 253-260, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29656249

ABSTRACT

To explore the effect of elevated CO2 concentrations ([CO2]) on phosphine formation in paddy fields, the matrix-bound phosphine (MBP) content, different phosphorus fractions and various carbon forms in soil samples from rice cultivation under varying CO2 concentrations of 400 ppm, 550 ppm and 700 ppm by indoor simulation experiment were determined. This study showed that MBP concentration did not increase significantly with elevated [CO2] over four-week cultivation periods of rice seedlings, regardless of soil layers. MBP had a significant positive correlation with total phosphorus (TP) and inorganic phosphorus (IP), and multiple stepwise linear regression analysis further indicated that MBP preservation in neutral paddy soils with depths of 0-20 cm may have been due to conversion from FeP and CaP. Based on redundancy analysis and forward selection analysis, speculated that the formation of MBP in the neutral paddy soils as the response to atmospheric elevated [CO2] was due to two processes: (i) FeP transformation affected by the changes of soil respiration (SCO2) and TOC was the main precursor for the production of MBP; and (ii) CaP transformation resulting from variation in HCO3- was the secondary MBP source. The complex combination of these two processes is simultaneously controlled by SCO2. In a word, the soil environment in the condition of elevated [CO2] was in favor of MBP storage in neutral paddy soils. The results of our study imply that atmospheric CO2 participates in and has a certain impact on the global biogeochemical cycle of phosphorus.


Subject(s)
Air Pollutants/analysis , Carbon Dioxide/analysis , Models, Chemical , Phosphines/chemistry , Agriculture , Atmosphere , Carbon , Oryza , Phosphorus/analysis , Soil/chemistry
8.
Chemosphere ; 93(9): 1942-7, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23876504

ABSTRACT

Ambient levels of phosphine (PH3) in the air, phosphine emission fluxes from paddy fields and rice plants, and the distribution of matrix-bound phosphine (MBP) in paddy soils were investigated throughout the growing stages of rice. The relationships between MBP and environmental factors were analyzed to identify the principal factors determining the distribution of MBP. The phosphine ambient levels ranged from 2.368±0.6060 ng m(-3) to 24.83±6.529 ng m(-3) and averaged 14.25±4.547 ng m(-3). The highest phosphine emission flux was 22.54±3.897 ng (m(2)h)(-1), the lowest flux was 7.64±4.83 ng (m(2)h)(-1), and the average flux was 14.17±4.977 ng (m(2)h)(-1). Rice plants transport a significant portion of the phosphine emitted from the paddy fields. The highest contribution rate of rice plants to the phosphine emission fluxes reached 73.73% and the average contribution was 43.00%. The average MBP content of 111.6 ng kg(-1)fluctuated significantly in different stages of rice growth and initially increased then decreased with increasing depth. The peak MBP content in each growth stage occurred approximately 10 cm under the surface of paddy soils. Pearson correlation analyses and stepwise multiple regression analysis showed that soil temperature (Ts), acid phosphatase (ACP) and total phosphorus (TP) were the principal environmental factors, with correlative rankings of Ts>ACP>TP.


Subject(s)
Crops, Agricultural/chemistry , Oryza/chemistry , Phosphines/analysis , Soil Pollutants/analysis , Environmental Monitoring , Phosphorus/analysis , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL