Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Phytomedicine ; 113: 154742, 2023 May.
Article in English | MEDLINE | ID: mdl-36893673

ABSTRACT

BACKGROUND: Osteoarthritis (OA) is an inflammatory response in chondrocytes, causing extracellular matrix (ECM) degradation and cartilage destruction, affecting millions of people worldwide. Chinese herbal formulae BuShen JianGu Fang (BSJGF) has been clinically applied for treating OA-related syndromes, but the underlying mechanism still unclear. METHODS: The components of BSJGF were analyzed by liquid chromatography-mass spectrometry (LC-MS). To make a traumatic OA model, the anterior cruciate ligament of 6-8-week-old male SD rats were cut and then the 0.4 mm metal was used to destroy the knee joint cartilage. OA severity was assessed by histological and Micro-CT. Mouse primary chondrocytes were utilized to investigate the mechanism of BSJGF alleviate osteoarthritis, which was examined by RNA-seq technology combined with a series of functional experiments. RESULTS: A total 619 components were identified by LC-MS. In vivo, BSJGF treatment result in a higher articular cartilage tissue area compared to IL-1ß group. Treatment also significantly increased Tb.Th, BV/TV and BMD of subchondral bone (SCB), which implied a protective effect on maintaining the stabilization of SCB microstructure. In vitro results indicated BSJGF promoted chondrocyte proliferation, increased the expression level of cartilage-specific genes (Sox9, Col2a1, Acan) and synthesized acidic polysaccharide, while inhibiting the release of catabolic enzymes and production of reactive oxygen species (ROS) induced by IL-1ß. Transcriptome analysis showed that there were 1471 and 4904 differential genes between IL-1ß group and blank group, BSJGF group and IL-1ß group, respectively, including matrix synthesis related genes (Col2a1, H19, Acan etc.), inflammation related genes (Comp, Pcsk6, Fgfr3 etc.) and oxidative stress related genes (Gm26917, Bcat1, Sod1 etc.). Furthermore, KEGG analysis and validation results showed that BSJGF reduces OA-mediated inflammation and cartilage damaged due to modulation of NF-κB/Sox9 signaling axis. CONCLUSION: The innovation of the present study was the elucidation of the alleviating cartilage degradation effect of BSJGF in vivo and in vitro and discovery of its mechanism through RNA-seq combined with function experiments, which provides a biological rationale for the clinical application of BSJGF for OA treatment.


Subject(s)
Cartilage, Articular , Osteoarthritis , Male , Rats , Animals , Mice , NF-kappa B/metabolism , Rats, Sprague-Dawley , Signal Transduction , Osteoarthritis/metabolism , Inflammation/drug therapy , Interleukin-1beta/metabolism
2.
Article in English | MEDLINE | ID: mdl-35399624

ABSTRACT

Background: As in philosophy of traditional Chinese medicine (TCM), the theory of "kidney governing bones" has been demonstrated by a series of scientific studies. Furthermore, many groups including ours have explored the molecular mechanisms related to bone development, growth, and regeneration using modern biology technologies, such as RNA sequencing (RNA-Seq) and isobaric tags for relative and absolute quantification (ITRAQ), and have demonstrated that the underlying molecular mechanisms were highly consistent with the "kidney governing bones" theory. Objective: Kidney-yang deficiency (YD), as a pathological condition, has a passive effect on the skeleton growth; more specifically, it is a state of skeletal metabolic disorder. However, the exact molecular mechanisms related to the "kidney governing bones" theory under the control of multiple organs and systems are still unknown. Methods: In this study, we performed RNA-Seq analysis to investigate and compare the gene expression patterns of six types of tissue (bone, cartilage, kidney, testicle, thyroid gland, and adrenal gland) from YD rats and normal rats and analyzed the interaction effects controlled by multiple functional genes and signaling pathways between those tissues. Results: Our results showed that, in the state of YD, the functions of bone and cartilage were inhibited. Furthermore, multiple organs involving the reproductive, endocrine, and urinary systems were also investigated, and our results showed that YD could cause dysfunctions of these systems by downregulating multiple functional genes and signaling pathways that positively regulate the homeostasis of these tissues. Conclusion: We ensure that "kidney governing bones" was not a simple change in a single gene but the changes in complex biological networks caused by functional changes in multiple genes. This also coincides with the holistic view of TCM, which holds that the human body itself is an organic whole and the functional activities of each organ coordinate with each other.

3.
Biomed Res Int ; 2021: 3931750, 2021.
Article in English | MEDLINE | ID: mdl-34621894

ABSTRACT

Xianling Gubao Capsule (XGC), a kind of capsule preparation of Chinese herbal officially approved for sale by the National Medical Products Administration (NMPA), has the effect of tonifying kidney and strengthening bones. Although the impact of XGC in treating bone diseases has been widely studied, the effect of XGC in kidney injury is unknown yet. The kidney injury model is established by intraperitoneal injection with cadmium chloride (CdCl2). Before model establishment, each XGC group was pregavaged with XGC for 10 d. After 10 d, CdCl2 was injected intraperitoneally into the model group and each XGC group, each XGC group continued to be gavaged with XGC for 4 weeks, and the control group was gavaged with equal doses of distilled water once daily. The level of serum urea nitrogen (BUN) and serum creatinine (Cr) is evaluated by kit. The effect of XGC on protecting kidney injury in mice with kidney injury is analyzed by histopathology (HE stain), immunohistochemistry (IHC), and real-time fluorescence quantitative PCR (RT-qPCR). The results show that CdCl2 significantly increases the level BUN and Cr in serum and results in remarkable pathological changes in the nephron, including tubule edema, congestion, and necrosis. While oral administration of XGC can significantly decrease BUN and Cr in serum and prevent and protect the kidney from the above injuries. In addition, the protein expression of p-mTOR was remarkably reduced, and the ratio of LC3II/LC3I protein and mRNA was significantly increased in mice with oral administration of XGC. Our findings suggest that XGC can prevent and protect kidney injury by improving the state of renal tubular hyperemia and necrosis and reduce the level of BUN and Cr in cadmium poisoning mice.


Subject(s)
Cadmium/toxicity , Drugs, Chinese Herbal/pharmacology , Kidney/injuries , Animals , Autophagy/drug effects , Autophagy/genetics , Blood Urea Nitrogen , Capsules , Creatinine/blood , Female , Gene Expression Regulation/drug effects , Kidney/drug effects , Kidney/pathology , Kidney/physiopathology , Mice, Inbred C57BL , RNA, Messenger/genetics , RNA, Messenger/metabolism
4.
Article in English | MEDLINE | ID: mdl-34671409

ABSTRACT

Deer velvet antlers are the young horns of male deer that are not ossified and densely overgrown. Velvet antler and its preparations have been widely used in the treatment of postmenopausal osteoporosis (PMOP) in recent years, although its mechanism of action in the human body remains unclear. To screen the effective ingredients and targets of velvet antler in the treatment of PMOP using network pharmacology and to explore the potential mechanisms of velvet antler action in such treatments, we screened the active ingredients and targets of velvet antler in the BATMAN-TCM database. We also screened the relevant targets of PMOP in the GeneCards and OMIM databases and then compared the targets at the intersection of both velvet antler and PMOP. We used Cytoscape 3.7.2 software to construct a network diagram of "disease-drug-components-targets" and a protein-protein interaction (PPI) network through the STRING database and screened out the core targets; the R language was then used to analyze the shared targets between antler and PMOP for GO-enrichment analysis and KEGG pathway-annotation analysis. Furthermore, we used the professional software Maestro 11.1 to verify the predictive analysis based on network pharmacology. Hematoxylin-eosin (H&E) staining and micro-CT were used to observe the changes in trabecular bone tissue, further confirming the results of network pharmacological analysis. The potentially effective components of velvet antler principally include 17ß-E2, adenosine triphosphate, and oestrone. These components act on key target genes such as AKT1, IL6, MAPK3, TP53, EGFR, SRC, and TNF and regulate the PI3K/Akt-signaling and MAPK-signaling pathways. These molecules participate in a series of processes such as cellular differentiation, apoptosis, metabolism, and inflammation and can ultimately be used to treat PMOP; they reflect the overall regulation, network regulation, and protein interactions.

5.
Article in English | MEDLINE | ID: mdl-34335815

ABSTRACT

In-stent restenosis (ISR) is the main factor affecting the outcome of percutaneous coronary intervention (PCI), and its main pathological feature is neointimal hyperplasia. Huotan Jiedu Tongluo decoction (HTJDTLD) is an effective traditional Chinese medicine (TCM) prescription for the treatment of vascular stenosis diseases. However, the precise anti-ISR mechanism of HTJDTLD remains unclear. Here, we investigated whether HTJDTLD can inhibit the excessive activation of endoplasmic reticulum stress (ERS) and reduce the level of autophagy factors through regulating the PERK-eIF2α-ATF4 pathway, thereby inhibiting the proliferation of the intima of blood vessels damaged by balloon injury (BI) and preventing the occurrence of ISR. In this study, a 2F Fogarty balloon was used to establish a common carotid artery (CCA) BI model in male Sprague-Dawley rats. Then, HTJDTLD (16.33 g/kg/d) or atorvastatin (1.19 mg/kg/d) was administered by gavage. Four weeks later, hematoxylin-eosin (HE) and Masson staining of the injured CCA were performed to observe the histological changes in the CCA. Immunohistochemistry (IHC) was used to assess the proliferation and dedifferentiation of vascular smooth muscle cells (VSMCs) in the CCA. Western blotting and RT-PCR were used to measure the expression of ERS- and autophagy-related proteins and mRNAs in the CCA. The results indicated that HTJDTLD significantly alleviated BI-induced carotid artery intimal hyperplasia and fibrosis and reduced the neointimal area (NIA) and NIA/medial area (MA) ratio. In addition, HTJDTLD inhibited the proliferation and dedifferentiation of VSMCs, reduced the expression of proliferating cell nuclear antigen (PCNA), and increased the smooth-muscle-α-actin- (SMα-actin-) positive area. HTJDTLD also significantly reduced the expression of the ERS-related factors: GRP78, p-PERK/PERK, p-eIF2α/eIF2α, ATF4, and CHOP. In addition, the expression of the autophagy-related factors, Beclin1, LC3B, and ATG12, was significantly decreased. In addition, in vitro experiments showed that HTJDTLD inhibited the above-mentioned ERS signal molecules in human umbilical vein endothelial cells (HUVEC) and rat aortic smooth muscle cells (A7R5) induced by tunicamycin (TM) and played a crucial role in protecting cells from damage. HTJDTLD may be a very promising drug for the treatment of ISR.

6.
Article in English | MEDLINE | ID: mdl-34249129

ABSTRACT

Eucommia leaves are dry leaves of Eucommia ulmoides which have long been considered as a functional health food for the treatment of hypertension, hypercholesterolemia, fatty liver, and osteoporosis. With the recent development of Chinese medicine, Eucommia leaves are widely used for tonifying the kidneys and strengthening bone. However, the specific molecular mechanism of Eucommia leaves for strengthening bone remains largely unknown. Osteoblasts are the main functional cells of bone formation; thus, it is essential to study the effect of Eucommia leaves on osteoblasts to better understand their mechanism of action. In the present study, we prepared an aqueous extract of Eucommia leaves (ELAE) and determined its content by high-performance liquid chromatography (HPLC). The effects of ELAE on MC3T3-E1 cells were investigated by CCK-8 assay, alkaline phosphatase (ALP), and Alizarin red S staining assays, combined with RNA sequencing (RNA-seq) and qRT-PCR validation. We demonstrated that ELAE had a significant promoting effect on the proliferation of MC3T3-E1 cells and significantly enhanced extracellular matrix synthesis and mineralization, which were achieved by regulating various functional genes and related signaling pathways. ELAE significantly increased the expression level of genes promoting cell proliferation, such as Rpl10a, Adnp, Pex1, Inpp4a, Frat2, and Pcdhga1, and reduced the expression level of genes inhibiting cell proliferation, such as Npm1, Eif3e, Cbx3, Psmc6, Fgf7, Fxr1, Ddx3x, Mbnl1, and Cdc27. In addition, ELAE increased the expression level of gene markers in osteoblasts, such as Col5a2, Ubap2l, Dkk3, Foxm1, Col16a1, Col12a1, Usp7, Col4a6, Runx2, Sox4, and Bmp4. Taken together, our results suggest that ELAE could promote osteoblast proliferation, differentiation, and mineralization and prevent osteoblast apoptosis. These findings not only increase our understanding of ELAE on the regulation of bone development but also provide a possible strategy to further study the prevention and treatment of osteogenic related diseases by ELAE.

7.
J Orthop Surg Res ; 16(1): 208, 2021 Mar 22.
Article in English | MEDLINE | ID: mdl-33752715

ABSTRACT

BACKGROUND: Deer antler is a zoological exception due to its fantastic characteristics, including amazing growth rate and repeatable regeneration. Deer antler has been used as a key ingredient in traditional Chinese medicine relating to kidney and bone health for centuries. The aim of this study was to dissect the molecular regulation of deer antler extract (DAE) on xiphoid cartilage (XC). METHODS: The DAE used in this experiment was same as the one that was prepared as previously described. The specific pathogen-free (SPF) grade Sprague-Dawley (SD) rats were randomly divided into blank group (n =10) and DAE group (n =10) after 1-week adaptive feeding. The DAE used in this experiment was same as the one that was prepared as previously described. The rats in DAE group were fed with DAE for 3 weeks at a dose of 0.2 g/kg per day according to the body surface area normalization method, and the rats in blank group were fed with drinking water. Total RNA was extracted from XC located in the most distal edge of the sternum. Illumina RNA sequencing (RNA-seq) in combination with quantitative real-time polymerase chain reaction (qRT-PCR) validation assay was carried out to dissect the molecular regulation of DAE on XC. RESULTS: We demonstrated that DAE significantly increased the expression levels of DEGs involved in cartilage growth and regeneration, but decreased the expression levels of DEGs involved in inflammation, and mildly increased the expression levels of DEGs involved in chondrogenesis and chondrocyte proliferation. CONCLUSIONS: Our findings suggest that DAE might serve as a complementary therapeutic regent for cartilage growth and regeneration to treat cartilage degenerative disease, such as osteoarthritis.


Subject(s)
Antlers/chemistry , Bone Regeneration/genetics , Cartilage/growth & development , Cartilage/physiology , Chondrogenesis/genetics , Deer/anatomy & histology , Gene Expression Regulation, Developmental/drug effects , Gene Expression/genetics , Inflammation/prevention & control , Medicine, Chinese Traditional , Tissue Extracts/pharmacology , Xiphoid Bone , Animals , Cell Differentiation/genetics , Cell Proliferation/genetics , Chondrocytes/physiology , Male , Rats, Sprague-Dawley
8.
J Orthop Surg Res ; 16(1): 8, 2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33407721

ABSTRACT

BACKGROUND: Deer antler is considered as a precious traditional Chinese medicinal material and has been widely used to reinforce kidney's yang, nourish essence, and strengthen bone function. The most prominent bioactive components in deer antler are water-soluble proteins that play potential roles in bone formation and repair. The aim of this study was to explore the molecular control and therapeutic targets of deer antler extract (DAE) on articular cartilage. METHODS: DAE was prepared as previously described. All rats were randomly divided into Blank group and DAE group (10 rats per group) after 7-day adaptive feeding. The rats in DAE group were orally administrated with DAE at a dose of 0.2 g/kg per day for 3 weeks, and the rats in Blank group were fed with drinking water. Total RNA was isolated from the articular cartilage of knee joints. RNA sequencing (RNA-seq) experiment combined with quantitative real-time polymerase chain reaction (qRT-PCR) verification assay was carried out to explore the molecular control and therapeutic targets of DAE on articular cartilage. RESULTS: We demonstrated that DAE significantly increased the expression levels of functional genes involved in cartilage formation, growth, and repair and decreased the expression levels of susceptibility genes involved in the pathophysiology of osteoarthritis. CONCLUSIONS: DAE might serve as a candidate supplement for maintaining cartilage homeostasis and preventing cartilage degeneration and inflammation. These effects were possibly achieved by accelerating the expression of functional genes involved in chondrocyte commitment, survival, proliferation, and differentiation and suppressing the expression of susceptibility genes involved in the pathophysiology of osteoarthritis. Thus, our findings will contribute towards deepening the knowledge about the molecular control and therapeutic targets of DAE on the treatment of cartilage-related diseases.


Subject(s)
Antlers/chemistry , Cartilage, Articular/metabolism , Cartilage, Articular/physiology , Deer , Osteogenesis/drug effects , Osteogenesis/genetics , Tissue Extracts/administration & dosage , Tissue Extracts/pharmacology , Administration, Oral , Animals , Collagen Type I/genetics , Collagen Type I/metabolism , Collagen Type I, alpha 1 Chain , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Genetic Predisposition to Disease/genetics , Hyaluronic Acid/genetics , Hyaluronic Acid/metabolism , Male , Medicine, Chinese Traditional , Molecular Targeted Therapy , Osteoarthritis/genetics , Proteoglycans/genetics , Proteoglycans/metabolism , RNA/genetics , RNA/isolation & purification , Rats, Sprague-Dawley , S100 Calcium-Binding Protein A4/genetics , S100 Calcium-Binding Protein A4/metabolism
9.
J Orthop Surg Res ; 15(1): 146, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32295616

ABSTRACT

BACKGROUND: Guzhi Zengsheng Zhitongwan (GZZSZTW) is an effective Chinese medicinal formulation for the treatment of osteoarthritis (OA) designed according to the "kidney governing bone" theory, which has been widely used as a golden guide for treating bone and cartilage diseases in traditional Chinese medicine. The aim of this study was to explore the molecular mechanism underlying its effects on the bone and kidney. METHODS: Preparation and quality control were performed as previously described. Since GZZSZTW is orally administered in the form of pills prepared in boiled water, the Chinese materia medica (CMM) mixture of this formula was extracted with distilled water by a reflux method and was then filtered through a 0.45-µm Hollow Fiber Cartridge (GE Healthcare, USA). The filtrate was freeze-dried by a Heto PowerDry LL3000 Freeze Dryer (Thermo, USA) and stored at - 80 °C. The effects of GZZSZTW on gene expression and regulation of both kidney and bone tissues were investigated using a state-of-the-art RNA-seq technology. RESULTS: We demonstrated that GZZSZTW could enhance kidney function and suppress bone formation and resorption by modulating the activities of osteoblast and osteoclast, and might subsequently contribute to the inhibition of osteophyte formation during the process of OA. These effects might be achieved by the synergistic interactions of various herbs and their active components in GZZSZTW, which increased the expression levels of functional genes participating in kidney function, regulation, and repair, and then decreased the expression levels of genes involved in bone formation and resorption. Thus, our findings were consistent with the "kidney governing bone" theory, which has been widely used as a guide in clinical practice for thousands of years. CONCLUSIONS: This study has deepened the current knowledge about the molecular effects of GZZSZTW on bone and kidney regulation. Furthermore, this study might be able to provide possible strategies to further prevent and treat joint diseases by using traditional Chinese medicinal formulations following the "kidney governing bone" theory.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Kidney/drug effects , Kidney/metabolism , Osteoblasts/drug effects , Osteoblasts/metabolism , Animals , Femur/cytology , Femur/drug effects , Femur/metabolism , Male , Osteoclasts/drug effects , Osteoclasts/metabolism , Random Allocation , Rats , Rats, Sprague-Dawley , Sequence Analysis, RNA/methods , Tibia/cytology , Tibia/drug effects , Tibia/metabolism
10.
Chin Med ; 14: 29, 2019.
Article in English | MEDLINE | ID: mdl-31485261

ABSTRACT

BACKGROUND: Guzhi Zengsheng Zhitongwan (GZZSZTW) is an effective formula of traditional Chinese herbal medicine and has been widely applied in the treatment of joint diseases for many years. The aim of this study was to dissect the molecular targets and signaling pathways of Guzhi Zengsheng Zhitongwan based on the analysis of serum proteomics. METHODS: The Chinese herbs of GZZSZTW were immersed in 5 l distilled water and boiled with reflux extraction method. The extract was filtered, concentrated and freeze-dried. The chemical profile of GZZSZTW extract was determined by high-performance lipid chromatography (HPLC). The 7-week old Sprague-Dawley (SD) rats in GZZSZTW groups were received oral administration at doses of 0.8, 1.05, and 1.3 g/kg per day and the rats in blank group were fed with drinking water. Serum samples were collected from the jugular veins. Primary chondrocyte viability was evaluated by CCK-8 assay. A full spectrum of the molecular targets and signaling pathways of GZZSZTW were investigated by isobaric tags for relative and absolute quantitation (iTRAQ) analysis and a systematic bioinformatics analysis accompanied with parallel reaction monitoring (PRM) and siRNA validation. RESULTS: GZZSZTW regulated a series of functional proteins and signaling pathways responsible for cartilage development, growth and repair. Functional classification analysis indicated that these proteins were mainly involved in the process of cell surface dynamics. Pathway analysis mapped these proteins into several signalling pathways involved in chondrogenesis, chondrocyte proliferation and differentiation, and cartilage repair, including hippo signaling pathway, cGMP-PKG signaling pathway, cell cycle and calcium signaling pathway. Protein-protein interaction analysis and siRNA knockdown assay identified an interaction network consisting of TGFB1, RHO GTPases, ILK, FLNA, LYN, DHX15, PKM, RAB15, RAB1B and GIPC1. CONCLUSIONS: Our results suggest that the effects of GZZSZTW on treating joint diseases might be achieved through the TGFB1/RHO interaction network coupled with other proteins and signaling pathways responsible for cartilage development, growth and repair. Therefore, the present study has greatly expanded our knowledge and provided scientific support for the underlying therapeutic mechanisms of GZZSZTW on treating joint diseases. It also provided possible alternative strategies for the prevention and treatment for joint diseases by using traditional Chinese herbal formulas.

11.
Mol Biol Rep ; 46(5): 4861-4872, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31286391

ABSTRACT

Traditional Chinese medicine has been proven to be effective in treating human diseases according to a long-term observation for more than 2000 years. However, the precise molecular mechanisms of a majority of the medications are still largely unknown. Deer antler has been clinically used as an effective animal medication in traditional Chinese medicine for many centuries. Previous studies have demonstrated that antler extracts play crucial roles in promoting bone and cartilage development, growth and repair. However, the underlying molecular mechanism remains to be elucidated. In the present study, we applied isobaric tags for relative and absolute quantitation (iTRAQ) technology and a systematic bioinformatics analysis accompanied with validation method to obtain a full spectrum of the serum protein profiles under deer antler extract treatment. We identified a complex interaction network formed by the positive regulation of Tropomyosins (Tpm1, 2 and 4), WD repeat-containing protein 1 (Wdr1), Alpha-actinin-1 (Actn1) and Destrin (Dstn) and the negative regulation of Alpha-2-macroglobulin (A2m), Serine protease inhibitor A3 N (Serpina3n) and Apolipoproteins (Apoh and Apof), which coordinately interact with multiple proteins and signaling pathways. Our results suggest that the therapeutic effects of deer antler extract on treating bone diseases might achieved though the regulation of bone formation and remodeling by controlling a series of serum proteins and signaling pathways that were essential for osteoblast and osteoclast activities. Thus, this study has greatly deepened the current knowledge about the molecular mechanism of therapeutic effects of deer antler extract on bone diseases such as osteoporosis.


Subject(s)
Antlers/chemistry , Biological Products/pharmacology , Bone and Bones/drug effects , Bone and Bones/metabolism , Deer , Proteome , Proteomics , Animals , Biological Products/chemistry , Biomarkers , Male , Protein Interaction Mapping , Protein Interaction Maps , Proteomics/methods , Reproducibility of Results , Signal Transduction
12.
Mol Biol Rep ; 46(2): 1635-1648, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30680597

ABSTRACT

Deer antlers are unique cranial appendages capable of regeneration and rapid growth. In addition, deer antlers have been widely used in traditional Chinese medicine to promote the function of the kidneys, reproductive system, bones and nervous system. It has been shown that water-soluble substances are the major bioactive components within the deer antlers. In this study, we prepared aqueous extracts from deer antlers during a rapid growth stage. We investigated the effects of antler extracts on primary chondrocytes by analyzing their protein expression patterns using isobaric tags for relative and absolute quantitation technology. We demonstrated that antler extracts promote chondrocyte proliferation and prevent chondrocyte differentiation and apoptosis by controlling multiple cellular processes involved in genomic stability, epigenetic alterations, ribosome biogenesis, protein synthesis and cytoskeletal reorganization. Antler extracts significantly increased the expression levels of proliferation markers Mki67 and Stmn1 and differentiation inhibitor Acp5 as well as cellular apoptosis inhibitors Ndufa4l2 and Rcn1. Thus, this study has greatly expanded our current knowledge of the molecular effects of antler extracts on chondrocytes. It has also shed new light on possible strategies to prevent damage to and to treat cartilage and its related diseases by using aqueous extracts from growing Sika deer antlers.


Subject(s)
Antlers/growth & development , Chondrocytes/drug effects , Tissue Extracts/pharmacology , Animals , Antlers/chemistry , Antlers/metabolism , Apoptosis/drug effects , Cell Differentiation/drug effects , Cell Proliferation/drug effects , China , Chondrocytes/physiology , Chondrogenesis/drug effects , Deer , Proteomics/methods
13.
Article in English | MEDLINE | ID: mdl-30275866

ABSTRACT

Chinese materia medica (CMM) are essential components of traditional Chinese medicine, and Chinese medicinal formulas consisting of 2 or more types of CMM are widely used. These formulations have played a pivotal role in health protection and disease control for thousands of years. Guzhi Zengsheng Zhitongwan (GZZSZTW), which represents one of the Chinese medicinal formulations, has been used for several decades to treat joint diseases. However, the exact molecular mechanism underlying its efficacy in treating osteoarthritis remains to be elucidated. In the present study, we investigated the effects of GZZSZTW on primary chondrocytes. We demonstrated that GZZSZTW significantly promoted chondrocyte viability, maintained chondrocytes in a continuous proliferative state, and prevented their further differentiation. These effects were achieved by the synergistic interactions of various herbs and their active components in GZZSZTW through an increase in the expression levels of functional genes participating in chondrocyte commitment and proliferation and a decrease in the expression levels of genes involved in chondrocyte differentiation. GZZSZTW treatment also decreased the expression levels of genes that inhibited chondrocyte proliferation. Thus, this study has greatly deepened the current knowledge about the molecular effects of GZZSZTW on chondrocytes. It has also shed new light on possible strategies to further prevent and treat cartilage-related diseases by using traditional Chinese medicinal formulations.

14.
In Vitro Cell Dev Biol Anim ; 54(6): 439-448, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29850973

ABSTRACT

The Sika deer antler is well known for its unique ability to regenerate repeatedly and grow rapidly. Furthermore, it is a precious traditional Chinese medicine and has been widely used for more than 20 centuries. The major bioactive components within the antlers are water-soluble proteins, polypeptides, and free amino acids. Many studies have shown that water-soluble antler extracts play pivotal roles in wound healing, immune system modulation, anti-oxidation, and anti-inflammation. However, the exact effects on chondrocytes are still largely unknown. In this study, we prepared fresh, aqueous extracts from growing deer antlers in a rapid growth stage. We isolated the chondrocytes from neonatal mouse rib cartilage and investigated the effects of antler extracts on chondrocyte viability. We also used the RNA-Seq method to analyze the gene expression pattern under antler extract treatment. We demonstrated that fresh extracts from Sika deer antlers in a rapid growth stage significantly promoted chondrocyte viability and kept chondrocytes proliferating continuously, while blocking maturation and further differentiation. Additionally, our results indicated that antler extracts might serve as a potent anti-oxidant, anti-inflammatory agent, and immune modulator to boost the abilities of chondrocytes against oxidative, inflammatory, and immune stresses. Thus, this study has greatly deepened our current knowledge of the molecular control of antler extracts on chondrocytes. It has also shed light on possible new strategies to further prevent and treat diseases of cartilage and other related diseases.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Antlers/chemistry , Chondrocytes/drug effects , Tissue Extracts/pharmacology , Animals , Antlers/growth & development , Cartilage/cytology , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cell Proliferation/genetics , Chondrocytes/cytology , Chondrocytes/physiology , Deer , Dose-Response Relationship, Drug , Gene Expression Regulation/drug effects , Immunologic Factors/pharmacology , Male , Mice, Inbred C57BL , Primary Cell Culture , Tissue Extracts/administration & dosage
15.
Biomed Res Int ; 2018: 9847286, 2018.
Article in English | MEDLINE | ID: mdl-30596102

ABSTRACT

Traditional Chinese medicine is one of the oldest medical systems in the world and has its unique principles and theories in the prevention and treatment of human diseases, which are achieved through the interactions of different types of materia medica in the form of Chinese medicinal formulations. GZZSZTW, a classical and effective Chinese medicinal formulation, was designed and created by professor Bailing Liu who is the only national medical master professor in the clinical research field of traditional Chinese medicine and skeletal diseases. GZZSZTW has been widely used in clinical settings for several decades for the treatment of joint diseases. However, the underlying molecular mechanisms are still largely unknown. In the present study, we performed quantitative proteomic analysis to investigate the effects of GZZSZTW on mouse primary chondrocytes using state-of-the-art iTRAQ technology. We demonstrated that the Chinese medicinal formulation GZZSZTW modulates chondrocyte structure, dynamics, and metabolism by controlling multiple functional proteins that are involved in the cellular processes of DNA replication and transcription, protein synthesis and degradation, cytoskeleton dynamics, and signal transduction. Thus, this study has expanded the current knowledge of the molecular mechanism of GZZSZTW treatment on chondrocytes. It has also shed new light on possible strategies to further prevent and treat cartilage-related diseases using traditional Chinese medicinal formulations.


Subject(s)
Biological Products/pharmacology , Chondrocytes/drug effects , Chondrocytes/metabolism , Drugs, Chinese Herbal/pharmacology , Proteins/metabolism , Animals , DNA Replication/drug effects , Materia Medica/pharmacology , Medicine, Chinese Traditional/methods , Mice , Mice, Inbred C57BL , Proteomics/methods , Signal Transduction/drug effects , Transcription, Genetic/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL