Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Affiliation country
Publication year range
1.
Phytomedicine ; 128: 155521, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38489891

ABSTRACT

BACKGROUND: The ancient Chinese herb Salvia miltiorrhiza Bunge (Danshen), plays the important role in cardiovascular and cerebrovascular disease. Furthermore, Danshen could also be used for curing carcinogenesis. Up to now, the anti-tumor effects of the main active constituents of Danshen have made great progress. However, the bioavailability of the active constituents of Danshen were restricted by their unique physical characteristics, like low oral bioavailability, rapid degradation in vivo and so on. PURPOSE: With the leap development of nano-delivery systems, the shortcomings of the active constituents of Danshen have been greatly ameliorated. This review tried to summarize the recent progress of the active constituents of Danshen based delivery systems used for anti-tumor therapeutics. METHODS: A systematic literature search was conducted using 5 databases (Embase, Google scholar, PubMed, Scopus and Web of Science databases) for the identification of relevant data published before September 2023. The words "Danshen", "Salvia miltiorrhiza", "Tanshinone", "Salvianolic acid", "Rosmarinic acid", "tumor", "delivery", "nanomedicine" and other active ingredients contained in Danshen were searched in the above databases to gather information about pharmaceutical decoration for the active constituents of Danshen used for anti-tumor therapeutics. RESULTS: The main extracts of Danshen could inhibit the proliferation of tumor cells effectively and a great deal of studies were conducted to design drug delivery systems to ameliorate the anti-tumor effect of the active contents of Danshen through different ways, like improving bioavailability, increasing tumor targeting ability, enhancing biological barrier permeability and co-delivering with other active agents. CONCLUSION: This review systematically represented recent progress of pharmaceutical decorations for the active constituents of Danshen used for anti-tumor therapeutics, revealing the diversity of nano-decoration skills and trying to inspire more designs of Danshen based nanodelivery systems, with the hope that bringing the nanomedicine of the active constituents of Danshen for anti-tumor therapeutics from bench to bedside in the near future.


Subject(s)
Antineoplastic Agents, Phytogenic , Drugs, Chinese Herbal , Salvia miltiorrhiza , Salvia miltiorrhiza/chemistry , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Humans , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/pharmacology , Drug Delivery Systems , Animals , Neoplasms/drug therapy , Nanoparticle Drug Delivery System/chemistry , Nanoparticles/chemistry
2.
Biochem Biophys Res Commun ; 645: 55-60, 2023 02 19.
Article in English | MEDLINE | ID: mdl-36680937

ABSTRACT

Chronic pain is frequently reported in clinical practice. Therefore, it is important to identify effective therapy to relieve pain. In this work, we selected Forsythoside B (FB), a phenylethanoid glycoside isolated from Forsythia suspensa (Thunb.) Vahl, to evaluate its effect in modulating inflammatory pain induced by complete Freund's adjuvant (CFA) and the involved mechanisms. We discovered that FB could attenuate inflammatory pain triggered by CFA injection and exert anti-anxiety effects. In detail, proinflammatory cytokines, consisting of IL-6 and TNF-α, were decreased after FB administration in the CFA-injected mice. Furthermore, the FB application ameliorated the activation of ionized calcium-binding adaptor molecule 1 (Iba-1) and glial fibrillary acidic protein (GFAP), the microglia and astrocytes markers respectively. Therefore, our findings indicate that FB could be a promising treatment for chronic inflammatory pain.


Subject(s)
Chronic Pain , Inflammation , Mice , Animals , Freund's Adjuvant , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Chronic Pain/chemically induced , Chronic Pain/drug therapy , Glucosides/pharmacology , Glucosides/therapeutic use , Analgesics/pharmacology , Analgesics/therapeutic use , Hyperalgesia/metabolism
3.
J Clin Lab Anal ; 34(4): e23130, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31876061

ABSTRACT

BACKGROUND: Coenzyme Q10 (CoQ10) supplementation can improve cognition in patients with Alzheimer's disease (AD) and AD transgenic model mice. To ameliorate the discomfort that patients with AD suffer after several blood extractions, a non-invasive method for detecting urine CoQ10 levels needs to be established. METHODS: Here, we developed a new technique of fluorescence spectrophotometry with ethyl cyanoacetate (FS-ECA), on the basis of the principle that the chemical derivative obtained from the interaction between CoQ10 and ECA was detected by a fluorescence detector at λex/em  = 450/515 nm. As a standard reference method, the same batches of the clinical samples were analyzed by high-performance liquid chromatography with an ultraviolet detector (HPLC-UV) at 275 nm. RESULTS: The limits of detection (LOD) and limits of quantization (LOQ) (serum: 0.021 and 0.043 mg/L; urine: 0.012 and 0.025 mg/L) determined by the FS-ECA method were similar to that obtained through HPLC-UV (serum: 0.017 and 0.035 mg/L; urine: 0.012 and 0.025 mg/L). More importantly, this new FS-ECA technique as well as the conventional HPLC-UV method could detect a marked difference in urine CoQ10 levels between AD and controls. CONCLUSION: Our findings suggest that this non-invasive method for quantifying urine CoQ10 potentially replaces HPLC to detect blood CoQ10.


Subject(s)
Chemistry, Clinical/methods , Ubiquinone/analogs & derivatives , Acetates/chemistry , Aged , Alzheimer Disease/blood , Alzheimer Disease/urine , Chromatography, High Pressure Liquid , Fluorescence , Humans , Limit of Detection , Spectrometry, Fluorescence , Temperature , Time Factors , Ubiquinone/blood , Ubiquinone/urine
4.
J Sep Sci ; 40(17): 3522-3534, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28704580

ABSTRACT

In the scope of stroke treatment, new neuronal nitric oxide synthase-postsynaptic density protein-95 uncouplers from herbal medicines were discovered and captured. To do so, highly selective magnetic molecularly imprinted polymers with a core-shell structure were prepared as artificial antibodies. According to the results of computational simulations, we designed and synthesized various polymers with varying amounts and types of template, functional monomer, cross-linker, and solvent. Characterization and performance tests revealed that the most appropriate artificial antibodies showed uniform spherical morphologies, large adsorption capacities, fast-binding kinetics, high selectivity, and quick separation. These artificial antibodies were then used as sorbents for dispersive magnetic solid-phase extraction coupled with high-performance liquid chromatography and mass spectrometry to capture and identify structural analogs to ZL006 from extracts of Scutellariae radix, Psoraleae fructus, and Trifolium pratense. Furthermore, according to the neuroprotective effect and coimmunoprecipitation test, Baicalein, Neobavaisoflavone, Corylifol A, and Biochanin A can be the potential uncouplers of neuronal nitric oxide synthase-postsynaptic density protein-95. Therefore, this present study contributes valuable information for the discovery of neuronal nitric oxide synthase-postsynaptic density protein-95 uncouplers from herbal medicines.


Subject(s)
Molecular Imprinting , Nerve Tissue Proteins/metabolism , Nitric Oxide Synthase Type I/metabolism , Plant Preparations/chemistry , Adsorption , Chromatography, High Pressure Liquid , Herbal Medicine , Polymers , Solid Phase Extraction
SELECTION OF CITATIONS
SEARCH DETAIL