Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 115
Filter
Add more filters

Complementary Medicines
Country/Region as subject
Publication year range
1.
Rejuvenation Res ; 27(2): 61-74, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38386515

ABSTRACT

Astragali radix (AR) and anemarrhenae rhizoma (AAR) are used clinically in Chinese medicine for the treatment of chronic heart failure (CHF), but the exact therapeutic mechanism is unclear. In this study, a total of 60 male C57BL/6 mice were divided into 5 groups, namely sham, model, AR, AAR, and AR-AAR. In the sham group, the chest was opened without ligation. In the other groups, the chest was opened and the transverse aorta was ligated to construct the transverse aortic constriction model. After 8 weeks of feeding, mice were given medicines by gavage for 4 weeks. Left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS) were detected by echocardiography. Heart weight index (HWI) and wheat germ agglutinin staining were used to evaluate cardiac hypertrophy. Hematoxylin-eosin staining was used to observe the pathological morphology of myocardial tissue. Masson staining was used to evaluate myocardial fibrosis. The content of serum brain natriuretic peptide (BNP) was detected by enzyme-linked immunosorbent assay kit. The content of serum immunoglobulin G (IgG) was detected by immunoturbidimetry. The mechanism of AR-AAR in the treatment of CHF was explored by proteomics. Western blot was used to detect the protein expressions of complement component 1s (C1s), complement component 9 (C9), and terminal complement complex 5b-9 (C5b-9). The results show that AR-AAR inhibits the expression of complement proteins C1s, C9, and C5b-9 by inhibiting the production of IgG antibodies from B cell activation, which further inhibits the complement activation, attenuates myocardial fibrosis, reduces HWI and cardiomyocyte cross-sectional area, improves cardiomyocyte injury, reduces serum BNP release, elevates LVEF and LVFS, improves cardiac function, and exerts myocardial protection.


Subject(s)
Drugs, Chinese Herbal , Heart Failure , Male , Mice , Animals , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Stroke Volume , Complement Membrane Attack Complex , Mice, Inbred C57BL , Ventricular Function, Left , Heart Failure/drug therapy , Heart Failure/metabolism , Fibrosis , Immunoglobulin G/therapeutic use
2.
Skin Res Technol ; 30(2): e13582, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38282275

ABSTRACT

BACKGROUND: Increasing amounts of ultraviolet radiation occur as ozone depletion causes the earth's ozone layer to be destroyed, making antioxidant efficacy a research hotspot. Previous studies on plum blossom have mostly focused on Volatile Oils, Flavonoids, Phenylpropanoids, and other compounds, whereas few studies have focused on low molecular weight polypeptide (LMWP) of plum blossom. This research provides a reference for the deep processing and utilization of plum blossom. OBJECTIVES: (a) Plum blossom low molecular weight polypeptides protect HaCaT cells against UVB-induced oxidative damage in vitro and the underlying mechanism. (b) Improve the theoretical basis for the intense processing and utilization of plum blossom. METHODS: The safe concentration of LMWP and the survival rate of HaCaT cells were determined using the CCK-8 experiment. The fluorescence intensity of reactive oxygen species (ROS) was identified using the dichlorofluorescin diacetate (DCFH-DA) method; Superoxide dismutase (SOD) and malondialdehyde (MDA) concentrations were measured in ruptured cells; Western blot analysis was used to examine the expression levels of three proteins: nuclear factor E2-related factor 2 (Nrf2), heme oxygenase 1 (HO-1), and benzoquinone oxidoreductase 1 (NQO-1). RESULTS: It was noted that a certain concentration of LMWP could promote cell proliferation. In oxidatively damaged HaCaT cells, SOD levels and survival rates were markedly reduced, but ROS and MDA levels were elevated. However, after treatment with LMWP, the survival rate of the cells and SOD levels were markedly increased, and the levels of ROS and MDA were markedly decreased. As shown by Western blotting, the model group exhibited lower levels of Nrf2, HO-1, and NQO-1 expression than the control group, whereas LMWP-treated cells had significantly higher levels of Nrf2, HO-1, and NQO-1 expression than their model-treated counterparts. CONCLUSIONS: LMMP can effectively protect HaCaT cells against oxidative damage in vitro induced by UVB, and the underlying mechanism is linked to the activation of the transcription factor Nrf2.


Subject(s)
HaCaT Cells , Prunus domestica , Humans , Reactive Oxygen Species , Prunus domestica/metabolism , Ultraviolet Rays/adverse effects , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/pharmacology , Molecular Weight , Oxidative Stress , Antioxidants/pharmacology , Antioxidants/metabolism , Superoxide Dismutase/metabolism , Superoxide Dismutase/pharmacology , Peptides/metabolism
3.
J Nanobiotechnology ; 21(1): 378, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37848956

ABSTRACT

BACKGROUND: The combination of drug delivery with immune checkpoint targeting has been extensively studied in cancer therapy. However, the clinical benefit for patients from this strategy is still limited. B7 homolog 3 protein (B7-H3), also known as CD276 (B7-H3/CD276), is a promising therapeutic target for anti-cancer treatment. It is widely overexpressed on the surface of malignant cells and tumor vasculature, and its overexpression is associated with poor prognosis. Herein, we report B7H3 targeting doxorubicin (Dox)-conjugated gold nanocages (B7H3/Dox@GNCs) with pH-responsive drug release as a selective, precise, and synergistic chemotherapy-photothermal therapy agent against non-small-cell lung cancer (NSCLC). RESULTS: In vitro, B7H3/Dox@GNCs exhibited a responsive release of Dox in the tumor acidic microenvironment. We also demonstrated enhanced intracellular uptake, induced cell cycle arrest, and increased apoptosis in B7H3 overexpressing NSCLC cells. In xenograft tumor models, B7H3/Dox@GNCs exhibited tumor tissue targeting and sustained drug release in response to the acidic environment. Wherein they synchronously destroyed B7H3 positive tumor cells, tumor-associated vasculature, and stromal fibroblasts. CONCLUSION: This study presents a dual-compartment targeted B7H3 multifunctional gold conjugate system that can precisely control Dox exposure in a spatio-temporal manner without evident toxicity and suggests a general strategy for synergistic therapy against NSCLC.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Doxorubicin , Lung Neoplasms , Nanoparticles , Photothermal Therapy , Humans , B7 Antigens , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Line, Tumor , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Drug Liberation , Gold , Hydrogen-Ion Concentration , Hyperthermia, Induced , Lung Neoplasms/drug therapy , Phototherapy , Photothermal Therapy/methods , Tumor Microenvironment , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Animals , Mice , Xenograft Model Antitumor Assays
4.
Front Pharmacol ; 14: 1108867, 2023.
Article in English | MEDLINE | ID: mdl-36874034

ABSTRACT

Introduction: Selaginella doederleinii Hieron is a traditional Chinese herbal medicine, the ethyl acetate extract from Selaginella doederleinii (SDEA) showed favorable anticancer potentials. However, the effect of SDEA on human cytochrome P450 enzymes (CYP450) remains unclear. To predict the herb-drug interaction (HDI) and lay the groundwork for further clinical trials, the inhibitory effect of SDEA and its four constituents (Amentoflavone, Palmatine, Apigenin, Delicaflavone) on seven CYP450 isoforms were investigated by using the established CYP450 cocktail assay based on LC-MS/MS. Methods: Appropriate substrates for seven tested CYP450 isoforms were selected to establish a reliable cocktail CYP450 assay based on LC-MS/MS. The contents of four constituents (Amentoflavone, Palmatine, Apigenin, Delicaflavone) in SDEA were determined as well. Then, the validated CYP450 cocktail assay was applied to test the inhibitory potential of SDEA and four constituents on CYP450 isoforms. Results: SDEA showed strong inhibitory effect on CYP2C9 and CYP2C8 (IC50 ≈ 1 µg/ml), moderate inhibitory effect against CYP2C19, CYP2E1 and CYP3A (IC50 < 10 µg/ml). Among the four constituents, Amentoflavone had the highest content in the extract (13.65%) and strongest inhibitory effect (IC50 < 5 µM), especially for CYP2C9, CYP2C8 and CYP3A. Amentoflavone also showed time-dependent inhibition on CYP2C19 and CYP2D6. Apigenin and Palmatine both showed concentration-dependent inhibition. Apigenin inhibited CYP1A2, CYP2C8, CYP2C9, CYP2E1 and CYP3A. Palmatine inhibited CYP3A and had a weak inhibitory effect on CYP2E1. As for Delicaflavone, which has the potential to develop as an anti-cancer agent, showed no obvious inhibitory effect on CYP450 enzymes. Conclusion: Amentoflavone may be one of the main reasons for the inhibition of SDEA on CYP450 enzymes, the potential HDI should be considered when SDEA or Amentoflavone were used with other clinical drugs. On the contrast, Delicaflavone is more suitable to develop as a drug for clinical use, considering the low level of CYP450 metabolic inhibition.

5.
Phytomedicine ; 110: 154632, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36608501

ABSTRACT

BACKGROUND: Tanshinone I (Tan I) is known as one of the important active components in Salvia miltiorrhiza. In recent years, Tan I has received a substantial amount of attention from the research community for various studies being updated and has been shown to possess favorable activities including anti-oxidative stress, regulation of cell autophagy or apoptosis, inhibition of inflammation, etc. PURPOSE: To summarize the investigation progress on the anti-disease efficacy and effect mechanism of Tan I in recent years, and provide perspectives for future study on the active ingredient. METHOD: Web of Science and PubMed databases were used to search for articles related to "Tanshinone I" published from 2010 to 2022. Proteins or genes and signaling pathways referring to Tan I against diseases were summarized and classified along with its different therapeutic actions. Protein-protein interaction (PPI) analysis was then performed, followed by molecular docking between proteins with high node degree and Tan I, as well as bioinformactic analysis including GO, KEGG and DO enrichment analysis with the collected proteins or genes. RESULTS: Tan I shows multiple therapeutic effects, including protection of the cardiovascular system, anti-cancer, anti-inflammatory, anti-neurodegenerative diseases, etc. The targets (proteins or genes) affected by Tan I against diseases involve Bcl-2, Bid, ITGA2, PPAT, AURKA, VEGF, PI3K, AKT, PRK, JNK, MMP9, ABCG2, CASP3, Cleaved-caspase-3, AMPKα, PARP, etc., and the regulatory pathways refer to Akt/Nrf2, SAPK/JNK, PI3K/Akt/mTOR, JAK/STAT3, ATF-2/ERK, etc. What's more, AKT1, CASP3, and STAT3 were predicted as the key action targets for Tan I by PPI analysis combined with molecular docking, and the potential therapeutic effects mechanisms against diseases were also further predicted by bioinformatics analyses based on the reported targets, providing new insights into the future investigation and helping to facilitate the drug development of Tan I.


Subject(s)
Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Proto-Oncogene Proteins c-akt/metabolism , Caspase 3/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Molecular Docking Simulation
6.
Phytomedicine ; 108: 154508, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36332384

ABSTRACT

BACKGROUND: Myeloid cell-mediated immunosuppression is a major obstacle to checkpoint blockade immunotherapy. We previously reported that total biflavonoids extract from Selaginella doederleinii (TBESD) and a flavone monomer isolated from TBESD, named Delicaflavone, have favorable anti-tumor activity. However, whether TBESD and Delicaflavone could affect the tumor microenvironment (TME) remains unclear. PURPOSE: In this study, we focused on the TME to determine whether TBESD and Delicaflavone could restore anti-tumor immune response. METHODS: 4T1 tumor-bearing immunocompetent BALB/c mice and T cell-deficient nude mice were used to examine the effect of TBESD on T cell-mediated immunity in vivo. Multi-parameter flow cytometry was conducted to evaluate the impacts of TBESD on TME. Primary cells, including murine CD8+ T cells, tumor associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) were prepared to investigate the modulatory activities of TBESD on immune cells. It was further determined whether Delicaflavone or Amentoflavone, two typical functional biflavones from TBESD, mediated those effects of TBESD. Finally, the impacts of TBESD and Delicaflavone on Jak1/STAT6 signaling pathway were explored via western blot. RESULTS: We found that TBESD significantly reduced 4T1 tumor growth in immunocompetent BALB/c mice, but not in nude mice. This effect was associated with the regulation of TME, shown as an increase in functional T cells and M1 phenotype TAMs (M1-TAMs), and a decrease in M2 phenotype TAMs (M2-TAMs), monocytic-MDSCs (M-MDSCs) and regulatory T cells (Tregs) in TBESD-treated BALB/c mouse 4T1 tumors. It was found ex vivo that TBESD restrained the viability and immunosuppressive properties of M2-TAMs and M-MDSCs, especially for the loss of arginase-1 expression. Additionally, TBESD re-educated M2-TAMs to an M1 like phenotype. Further investigations determined that Delicaflavone predominantly mediated the immuno-modulatory activities of TBESD both ex vivo and in vivo. Finally, Delicaflavone and TBESD blocked Jak1/STAT6 signaling pathway in M2-TAMs and MDSCs. CONCLUSION: The present study suggests Delicaflavone as a potent natural inhibitor of M2-TAMs and MDSCs, which fills the gap in knowledge on the immuno-modulatory effects of TBESD and Delicaflavone, and could have translational implications to improve the efficacy of cancer immunotherapy.


Subject(s)
Neoplasms , Selaginellaceae , Animals , Mice , Mice, Nude , CD8-Positive T-Lymphocytes , Myeloid Cells , Mice, Inbred BALB C , Immunity , Immunosuppression Therapy , Cell Line, Tumor , Tumor Microenvironment
7.
Front Pharmacol ; 13: 849110, 2022.
Article in English | MEDLINE | ID: mdl-35571075

ABSTRACT

Selaginella doederleinii Hieron is a traditional Chinese medicinal herb widely used to treat different cancers. Previously, we showed that the total bioflavonoid extract of S. doederleinii (TBESD) exhibits anti-carcinogenic activities both in vitro and in vivo. However, the plasma protein binding and pharmacokinetics parameters of TBESD remain unclear. To investigate plasma protein binding, tissue distribution, and excretion of TBESD, rats were administered a single dose of TBESD (600 mg/kg) intragastrically and tissue distribution and excretion of TBESD components were determined by rapid high-performance liquid chromatography and tandem mass spectrometry. TBESD binding to human serum albumin (HSA) was assessed by fluorescence spectroscopy. TBESD components amentoflavone, delicaflavone, robustaflavone, 2″,3″-dihydro-3',3‴-biapigenin, and 3',3‴-binaringenin were rapidly absorbed and distributed in various tissues, mostly in the lungs, kidneys, and ovaries, without long-term accumulation. The excretion of bioflavonoids occurred mostly via the intestinal tract and constituted 30% of the administered dose up to 48 h. Spectral analysis indicated that TBESD had a dynamic quenching effect on HSA by binding to one HSA site through hydrophobic interactions and hydrogen bond formation. This is the first comprehensive report on the tissue distribution, excretion, and plasma protein binding of TBESD. This study provides important information on TBESD pharmacokinetics necessary for its further development into a therapeutic form for clinical applications.

8.
Phytomedicine ; 102: 154119, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35617888

ABSTRACT

BACKGROUND: Ginsenoside Re (Re) belongs to protopanaxatriol saponins and exists in Panax ginseng, Panax quinquefolium, Panax notoginseng, and other plants in the Araliaceae family. Re has recently become a research focus owing to its pharmacological activities and benefits to human bodies. PURPOSE: To summarize recent findings regarding the pharmacological effects and mechanisms of Re and highlight and predict the potential therapeutic effects and systematic mechanism of Re. METHODS: Recent studies (2011-2021) on the pharmacological effects and mechanisms of Re were retrieved from Web of Science, PubMed, Google Scholar, Scopus, and Embase up to December 2021 using relevant keywords. Network pharmacology and bioinformatics analysis were used to predict the therapeutic effects and mechanisms of Re against potential diseases. RESULTS: Re presented a wide range of therapeutic and biological activities, including neuroprotective, cardiovascular, antidepressant, antitumorigenic, and others effects. The related pharmacological mechanisms of Re include the regulation of cholinergic and antioxidant systems in the brain; the induction of tumor cell apoptosis; the inhibition of tau protein hyperphosphorylation and oxidative stress; the activation of p38MAPK, ERK1/2, and JNK signals; the improvement of lipid metabolism; and the reduction of endothelial cell dysfunction. CONCLUSION: This paper summarizes comprehensively the current research progress of Re and provides new research insights into the therapeutic effects and mechanisms of Re against potential diseases.


Subject(s)
Drugs, Chinese Herbal , Ginsenosides , Panax notoginseng , Panax , Saponins , Drugs, Chinese Herbal/pharmacology , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Humans , Saponins/pharmacology
9.
Phytomedicine ; 101: 154105, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35490492

ABSTRACT

BACKGROUND: Chemotherapy drugs especially anthracyclines are widely used in the treatment of hematological malignancies and solid tumors. However, their clinical application is limited by dose-dependent and irreversible heart injury, which increases the risk of congestive heart failure and heart-related mortality. PURPOSE: This study aims to investigate the effect and mechanism of the natural flavonoid isoorientin (ISO) combined with doxorubicin (DOX) on the proliferation of tumor cells and improve the survival rate of DOX-injured cardiomyocytes. STUDY DESIGN/METHODS: Cardiomyocyte H9c2 and a variety of tumor cells were used to evaluate the protective effect of ISO on DOX-induced myocardial injury and enhance the anticancer effects of DOX. DOX chemotherapy-injured mice were used to evaluate the cardioprotective effect of ISO. RESULTS: The antiproliferation of DOX on Hela, HepG2, HT-29, and A549 cells could be increased synergistically when cotreated with ISO in vitro. ISO could also improve the survival rate of DOX-injured cardiomyocytes by reducing reactive oxygen species, maintaining mitochondrial function, and inhibiting apoptosis. In mice receiving DOX, a protective effect on myocardial tissue, which was reflected by improved survival state of mice receiving chemotherapy, was observed. The ECG, myocardial zymogram data, HE staining, and TEM observation of myocardial tissue sections showed that ISO had a dose-dependent protective effect on the mouse hearts injured by DOX. Network pharmacology and cardiomyocyte proteomics were used to seek for related target proteins to reveal the protective mechanism of ISO on mouse models, and some potential targets (including caspase-3, EGFR, MAPK1, ESR1, CDC42, STAT1, JAK2, LCK, and CDK2) were generated. Western blotting was further used to verify that ISO upregulated Nrf2 and TGF-ß3 by downregulating the phosphorylation levels of JNK and p38 proteins on the MAPK pathway and the Akt and Stat3 expression levels. The downregulation of cleaved caspase-3 and upregulation of Bcl-xl by ISO further confirmed its inhibition on caspase-dependent cardiomyocyte apoptosis. CONCLUSION: ISO could be a potential synergistic anticancer agent with a favorable property of reducing the cardiotoxicity for DOX, and the effect mechanism could refer to the inhibition of ISO on MAPK and caspase-dependent apoptosis pathways.


Subject(s)
Caspases , Heart Injuries , Animals , Apoptosis , Cardiotoxicity/drug therapy , Cardiotoxicity/metabolism , Caspase 3/metabolism , Caspases/metabolism , Doxorubicin/pharmacology , Luteolin , Mice , Mitogen-Activated Protein Kinases/metabolism , Myocytes, Cardiac , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
10.
Sci Total Environ ; 827: 154252, 2022 Jun 25.
Article in English | MEDLINE | ID: mdl-35247403

ABSTRACT

On the basis of the carbonaceous skeleton assisted thermal hydrolysis that we proposed to achieve efficient sludge dewatering, this work further explored phosphorus (P) transformation in the process. The results showed that during independent thermal hydrolysis in the temperature range of 120-240 °C, organic-P was first decomposed into soluble-P and particulate-P in liquid, and then combined with Ca, Fe, and Al to form more apatite-P (AP) and less non-apatite inorganic-P (NAIP). When the skeleton assisted the sludge thermal hydrolysis, the turning point of the hydrolysis temperature would reduce from 180 °C to 150 °C, at which the liquid-P began to decrease and the organic-P generally decomposed. Moreover, the increment in the content of AP halved while that of NAIP doubled compared to that in the process without the carbonaceous skeleton. These effects come from the exogenous components introduced by adding the skeleton, which were different from the sludge. Compared with the P-rich compound and metal elements that tend to bond with phosphate introduced by the skeleton, hemicellulose as a main organic component played a leading role in the different P transformations of AP and NAIP. The hemicellulose slightly increased the acidity of sludge products, thereby inhibiting AP production and promoting the production of recyclable NAIP. Overall, the carbonaceous skeleton assisted thermal hydrolysis was beneficial for P recovery with a very low filtrate loss rate.


Subject(s)
Phosphorus , Sewage , Apatites/chemistry , Hydrolysis , Phosphates/chemistry , Phosphorus/chemistry , Sewage/chemistry , Skeleton
11.
Sci Total Environ ; 823: 153723, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35150677

ABSTRACT

The arsenic (As) and selenium (Se) in fine particulate matter (PM10) have attracted increasing attentions due to their health effects. However, the emission control of fine particulate-bound arsenic and selenium (fine particulate-bound As/Se) from coal-fired power plants still faces various challenges. Understanding the formation and characteristics of fine particulate-bound As/Se is crucial for developing specific control technologies. This study clarifies the formation mechanism, removal characteristics, and inhalation bioaccessibility of fine particulate-bound As/Se from industrial coal-fired power plants through methods including aerosol generation, As/Se speciation determination, and in vitro bioaccessibility testing. The findings demonstrated that PM1 from pulverized coal-fired (PC) boilers was enriched with As/Se in terms of concentration and mass distribution. Instead, As/Se was mainly distributed in PM2.5-10 from circulating fluidized bed (CFB) boilers. Limestone injection in CFB boilers promoted As/Se enrichment in coarse PM. Fine particulate-bound As was mainly formed by chemical adsorption of As vapors by Ca-minerals, while the formation of fine particulate-bound Se was closely related to active Ca-minerals and Fe-minerals. Furthermore, Ca-bound As was easy to remove by electrostatic precipitator (ESP) and the removal of physically adsorbed SeO2(s) was difficult, which was caused by the specific resistivity of different mineral components. Importantly, finer particulate-bound As/Se posed higher inhalation bioaccessibility, following the order of PM1 ≥ PM1-2.5 > PM2.5-10. In particular, Ca-bound Se in fine PM owned high bioaccessibility. Based on these findings, measures were proposed to suppress the formation of fine particulate-bound As/Se in the furnace and/or strengthen its removal in the post-combustion stage.


Subject(s)
Air Pollutants , Arsenic , Selenium , Air Pollutants/analysis , Coal/analysis , Particulate Matter/analysis , Power Plants
12.
Chemosphere ; 287(Pt 2): 132127, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34488056

ABSTRACT

Gaseous selenium is of high saturated vapor pressure, making its retention in solid phases quite difficult during coal combustion. The selenium transformation from gaseous form into solid phases at low temperatures can be essential to control selenium emission. To understand the migration of SeO2 (g) on ash particles in the low-temperature zone, this study investigated the speciation of selenium in fly ash and simulated the physical retention of SeO2 (g) on fly ash. The results demonstrated that there was a large proportion of physically-bound Se in the fly ash of pulverized-coal-fired boiler (22.62 %-58.03%), while the content of physically-bound Se in fly ash of circulated fluidized-bed boiler was lower (∼6%). The physically-bound Se was formed through selenium condensation and physical adsorption. The decrease of temperature or the increase of cooling rate could promote the transformation of gaseous selenium to solid phase and the presence of HCl might suppress SeO2 transformation into Se in the condensation process. Meanwhile the compositions of fly ash had a great influence on the selenium adsorption process. Among typical coal-fired ash components, mullite showed the best performance in the selenium capture in the temperature range of 90-200 °C, contributing to the high content of physically-adsorbed selenium in PC fly ash. These findings provided new ideas for improving the removal rate of volatile selenium.


Subject(s)
Coal Ash , Selenium , Adsorption , Coal/analysis , Gases , Power Plants , Temperature
13.
Poult Sci ; 101(2): 101610, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34936951

ABSTRACT

In this study, the effects of 5 graded dietary levels (0.025, 0.05, 0.075, 0.1, and 0.125%) of dimethylglycine (DMG) were studied in laying hens during the late laying period (71-78 wk). Graded doses of DMG from 0.025 to 0.125% in the diet produced quadratic positive (P < 0.05) responses in the laying rate, egg-feed ratio, yolk color, grade follicular weight, and the number of large white follicles and linear positive (P < 0.05) responses in average egg weight, and the number of large white follicles. With 0.1% DMG, the laying rate and egg-feed ratio improved (P < 0.05), and the abdominal fat percentage decreased. Considering the laying performance under the conditions used in this study, the best-fit model for the DMG requirements of laying hens was estimated to range from 0.049 to 0.065% DMG during the late laying period based on a regression analysis. The addition of DMG did not affect the total cholesterol (TCH) and triglyceride (TG) contents in the plasma of laying hens; however, it significantly reduced the abdominal fat rate. DMG may change the course of lipid deposition in laying hens during the late laying period. In conclusion, supplementation with DMG can improve the laying rate and follicles development of laying hens.


Subject(s)
Animal Feed , Chickens , Animal Feed/analysis , Animals , Diet/veterinary , Dietary Supplements , Egg Yolk , Female , Ovum , Sarcosine/analogs & derivatives
14.
J Am Chem Soc ; 143(47): 19928-19937, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34766754

ABSTRACT

Lead halide perovskite nanocrystals (PNCs) are emerging as promising light emitters to be actively explored for high color purity and efficient light-emitting diodes. However, the most reported lead halide perovskite nanocrystal light-emitting diodes (PNCLEDs) encountered issues of emission line width broadening and operation voltage elevating caused by the quantum confinement effect. Here, we report a new type of PNCLED using large-size CsPbBr3 PNCs overly exceeding the Bohr exciton diameter, achieving ultranarrow emission line width and rapid brightness rise around the turn-on voltage. We adopt calcium-tributylphosphine oxide hybrid ligand passivation to produce highly dispersed large-size colloidal CsPbBr3 PNCs with a weak size confinement effect and also high photoluminescence quantum yield (∼85%). Utilizing these large-size PNCs as emitters, we manifest that the detrimental effects caused by the quantum confinement effect can be avoided in the device, thereby realizing the highest color purity in green PNCLED, with a narrow full width at half-maximum of 16.4 nm and a high corrected maximum external quantum efficiency of 17.85%. Moreover, the operation half-life time of the large-size PNCLED is 5-fold of that based on smaller-size PNCs. Our work provides a new avenue for improving the performance of PNCLEDs based on unconventional large-size effects.

15.
Ann Palliat Med ; 10(4): 3783-3792, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33752429

ABSTRACT

BACKGROUND: This study aimed to explore the mechanism of Bushen Huoxue decoction (BHD) in treating intervertebral disc degeneration using the network pharmacology method. METHODS: Using of oral bioavailability >30% and drug-likeness >0.18 as the screening standards, the effective components and targets of BHD were retrieved from the TCMSP database and the BATMAN-TCM database. The disease targets of intervertebral disc degeneration were retrieved from the GeneCards database. The Wayne map of the interaction targets of the effective components of BHD and intervertebral disc degeneration were drawn using R software. The protein-protein interaction (PPI) network of common targets was constructed using STRING software. The network map of the interaction targets of the effective components of BHD-intervertebral disc degeneration was drawn using Cytoscape3.7.2 software. The GO and KEGG enrichment analysis of the common targets of BHD and intervertebral disc degeneration was performed using R software and the related plug-ins to screen the potential pathways and analyze its mechanism. RESULTS: This study screened 164 effective components of BHD, 131 interaction targets, 626 targets for degenerative disc disease, and 31 common interaction targets. IL6, VEGFA, CASP3, EGFR, ESR1, and MAPK8 appeared more frequently. These were mainly enriched in the AGE-RAGE, TNF, PI3K Akt, and MAPK signaling pathways. CONCLUSIONS: BHD mainly intervenes in intervertebral disc degeneration through IL6, VEGFA, CASP3, EGFR, ESR1, and MAPK8. The mechanism of the intervention of BHD on intervertebral disc degeneration may be related to AGE-RAGE, TNF, PI3K Akt, MAPK, and other signal pathways.


Subject(s)
Drugs, Chinese Herbal , Intervertebral Disc Degeneration , Drugs, Chinese Herbal/therapeutic use , Humans , Intervertebral Disc Degeneration/drug therapy , Medicine, Chinese Traditional , Phosphatidylinositol 3-Kinases
16.
Zhongguo Zhong Yao Za Zhi ; 46(2): 312-319, 2021 Jan.
Article in Chinese | MEDLINE | ID: mdl-33645117

ABSTRACT

Breast tumor has become one of the malignant tumors with the highest incidence, and is a serious threat to human health, especially to women. Chemotherapy is an important anti-breast tumor therapy, which can be used in almost every stage of breast tumor therapy alone or in the combination with surgery and radiation therapy. Alkaloids are a kind of ubiquitous natural products, and important active components of various medicinal plants. A large number of studies have shown that alkaloids could exert an anti-breast tumor effect by inhibiting proliferation, metastasis and angiogenesis, resisting mitosis, promoting apoptosis and autophagy, and triggering cell cycle arrest. The extensive anti-breast tumor effect makes alkaloids an important candidate drug source. This paper reviews the anti-breast tumor mechanism of natural products of alkaloids.


Subject(s)
Alkaloids , Breast Neoplasms , Alkaloids/pharmacology , Apoptosis , Autophagy , Breast Neoplasms/drug therapy , Cell Cycle Checkpoints , Cell Line, Tumor , Cell Proliferation , Female , Humans
17.
Chemosphere ; 263: 127920, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32822936

ABSTRACT

Arsenic (As) and selenium (Se) pollution caused by coal combustion is receiving increasing concerns. The environmental impacts of As/Se are determined not only by stack emission but also by leaching process from combustion byproducts. For a better control of As/Se emission from As/Se-enriched coal combustion, this study investigated the migration and emission behavior of As/Se in a circulating fluidized bed (CFB) power plant equipped with fabric filter (FF) and wet flue gas desulfurization (WFGD) system. The results demonstrated that arsenic was both enriched in bottom ash (41.4-47.6%) and fly ash (52.4-58.6%), while selenium was mainly captured by fly ash (73.9-83.4%). Limestone injection into furnace promoted As/Se retention in ash residues. Arsenic was mainly converted into arsenate in high-temperature regions and partly trapped in bottom ash as arsenite. In contrast, selenium capture mainly occurred in low-temperature flue gas by the formation of selenite, because of the poor thermal stability of most selenite. Triplet-tank method can totally remove arsenic in WFGD wastewater. And 18.4-58.7% of selenium was removed, resulting from the precipitation of Se4+ anions with highly soluble Se6+ anions remaining in wastewater. The concentrations of As and Se in the stack emission were 0.25-1.02 and 0.96-2.24 µg/m3, receptively. The CFB boiler equipped with FF + WFGD was shown to provide good control of the As/Se emission into the atmosphere. Leaching tests suggested that more attention should be paid to As leachability from fly ash/gypsum, and Se leachability from gypsum/sludge.


Subject(s)
Air Pollutants/analysis , Arsenic/analysis , Power Plants , Selenium/analysis , Atmosphere , Beds , Calcium Carbonate , Calcium Sulfate , Coal/analysis , Coal Ash/chemistry , Environmental Monitoring , Gases
18.
Am J Phys Anthropol ; 174(2): 363-374, 2021 02.
Article in English | MEDLINE | ID: mdl-33241578

ABSTRACT

OBJECTIVES: Subbranches of Y-chromosome haplogroup C2a-L1373 are founding paternal lineages in northern Asia and Native American populations. Our objective was to investigate C2a-L1373 differentiation in northern Asia and its implications for Native American origins. MATERIALS AND METHODS: Sequences of rare subbranches (n = 43) and ancient individuals (n = 37) of C2a-L1373 (including P39 and MPB373), were used to construct phylogenetic trees with age estimation by BEAST software. RESULTS: C2a-L1373 expanded rapidly approximately 17.7,000-14.3,000 years ago (kya) after the last glacial maximum (LGM), generating numerous sublineages which became founding paternal lineages of modern northern Asian and Native American populations (C2a-P39 and C2a-MPB373). The divergence pattern supports possible initiation of differentiation in low latitude regions of northern Asia and northward diffusion after the LGM. There is a substantial gap between the divergence times of C2a-MPB373 (approximately 22.4 or 17.7 kya) and C2a-P39 (approximately 14.3 kya), indicating two possible migration waves. DISCUSSION: We discussed the decreasing time interval of "Beringian standstill" (2.5 ky or smaller) and its reduced significance. We also discussed the multiple possibilities for the peopling of the Americas: the "Long-term Beringian standstill model," the "Short-term Beringian standstill model," and the "Multiple waves of migration model." Our results support the argument from ancient DNA analyses that the direct ancestor group of Native Americans is an admixture of "Ancient Northern Siberians" and Paleolithic communities from the Amur region, which appeared during the post-LGM era, rather than ancient populations in greater Beringia, or an adjacent region, before the LGM.


Subject(s)
American Indian or Alaska Native , Asian People , Chromosomes, Human, Y/genetics , Human Migration/history , Anthropology, Physical , Asia, Northern , Asian People/classification , Asian People/genetics , Asian People/history , History, Ancient , Humans , Male , North America , Phylogeny , American Indian or Alaska Native/classification , American Indian or Alaska Native/genetics , American Indian or Alaska Native/history
19.
Environ Sci Technol ; 54(24): 16128-16137, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33092341

ABSTRACT

Wet flue gas desulfurization (WFGD) system is the core equipment for removing SO2 from coal-fired power plants, and it also has an important synergistic effect on the removal of selenium. However, the removal efficiency of Se across WFGD systems is not as expected, and it varies greatly in different coal-fired units (12.5-96%). In this study, a mathematical model was established to quantitatively describe the selenium migration behavior in WFGD spray towers, including the conversion of gaseous selenium to particulate selenium and the capture of gaseous SeO2 and particles by droplets. The calculation results show that the behavior of selenium in the spray tower can be divided into three stages: preparation, condensation, and removal. The condensation stage significantly affected the selenium distribution and its total removal efficiency. Furthermore, five factors which may affect the selenium behavior were investigated. Among them, the inlet particle size distribution and the droplet temperature had great impacts on the outlet selenium concentration, which may be the reason for the unstable selenium removal efficiencies. This study can help in understanding the migration process of selenium in WFGD spray towers and provide some guidance for the development of specific selenium control technologies.


Subject(s)
Air Pollutants , Selenium , Air Pollutants/analysis , Coal , Gases , Power Plants
20.
BMC Complement Med Ther ; 20(1): 274, 2020 Sep 10.
Article in English | MEDLINE | ID: mdl-32912207

ABSTRACT

BACKGROUND: Schisandra chinensis (Turcz.) Baill bee pollen extract (SCBPE) is often used as a functional food in China due to its good antioxidant property. However, its chemical compositions and effects on H9c2 cardiomyocytes against H2O2-induced cell injury still lacks of reports thus far. This study aimed to characterize the main components of SCBPE and investigate its protective effects against H2O2-induced H9c2 cardiomyocyte injury. METHODS: The main components of SCBPE were analyzed via ultraperformance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-QTOF MS/MS). The three main nucleosides in SCBPE were quantitatively analyzed via ultraperformance liquid chromatography-diode array detection. Furthermore, the potential mechanism by which SCBPE exerts protective effects against H2O2-induced H9c2 cardiomyocyte injury was explored for the first time via cell survival rate measurements; cell morphological observation; myocardial superoxide dismutase (SOD) activity and malondialdehyde (MDA) and glutathione (GSH) level determination; flow cytometry; and quantitative polymerase chain reaction. RESULTS: Two carbohydrates, three nucleosides, and nine quinic acid nitrogen-containing derivatives in SCBPE were identified or tentatively characterized via UPLC-QTOF MS/MS. The nine quinic acid nitrogen-containing derivatives were first reported in bee pollen. The contents of uridine, guanosine, and adenosine were 2.4945 ± 0.0185, 0.1896 ± 0.0049, and 1.8418 ± 0.0157 µg/mg, respectively. Results of in vitro experiments showed that cell survival rate, myocardial SOD activity, and GSH level significantly increased and myocardial MDA level significantly decreased in SCBPE groups compared with those in H2O2 group. Cell morphology in SCBPE groups also markedly improved compared with that in H2O2 group. Results indicated that SCBPE protected H9c2 cardiomyocytes from H2O2-induced apoptosis by downregulating the mRNA expressions of Bax, cytochrome C, and caspase-3 and upregulating the Bcl-2 mRNA expression. CONCLUSIONS: This study is the first to report that SCBPE could protect against oxidative stress injury and apoptosis in H2O2-injured H9c2 cells. Results indicated that the nucleosides and quinic acid nitrogen-containing derivatives could be the main substances that exert protective effects against H2O2-induced H9c2 cardiomyocyte injury.


Subject(s)
Apoptosis/drug effects , Myocardial Ischemia/drug therapy , Myocytes, Cardiac/drug effects , Oxidative Stress/drug effects , Pollen/chemistry , Schisandra/chemistry , Animals , Bees , Cell Line , China , Down-Regulation , Hydrogen Peroxide , Molecular Structure , Rats , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL