Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
Mar Pollut Bull ; 186: 114391, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36470099

ABSTRACT

Nutrient contamination assessments in the three West African tropical Comoé, Bandama, and Bia Rivers (Côte d'Ivoire) were performed from March 2016 to March 2018. Five stations per river were sampled. Nutrients spatio-temporal distributions were mapped and showed nitrogen concentrations (nitrite 0.001 to 0.025 mg/L NO2--N, and nitrate 0.26 to 3.60 mg/L NO3--N) increased significantly with rainfall contrary to phosphorus (0.01 to 0.12 mg/L P). The Chl-a and TSItsr data revealed the hypereutrophic status of rivers. Moreover, N:P mass ratio suggests nitrogen as the main limiting factor of primary production during the low (March) and high flow periods (October-November), while phosphorus is the limiting factor in June, at the high flow beginning. The land uses around watersheds were the main sources of phosphorus and nitrogen enhancing the rivers' eutrophication. Phosphorus and nitrogen fluxes were related to leaching river catchments and were significant sources of nutrients to the Atlantic Ocean.


Subject(s)
Phosphorus , Water Pollutants, Chemical , Phosphorus/analysis , Cote d'Ivoire , Rivers , Environmental Monitoring , Nitrogen/analysis , Water Pollutants, Chemical/analysis , Eutrophication , China
2.
Environ Monit Assess ; 187(12): 762, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26581608

ABSTRACT

Spatial and seasonal contaminations of zinc, copper, cadmium, and lead were assessed simultaneously in water, sediment, and in the bivalve Arca senilis from the Milliardaires Bay (Cote d'Ivoire) between February and October 2008. The metal load in sediments doubled from the dry season to the rainy season. On the contrary, metal concentrations in waters decreased significantly from the dry season to the rainy season. Zn and Pb concentrations in A. senilis showed similar seasonal variation with sediments. On the other hand, A. senilis regulated Cu concentrations by eliminating about twelve times the concentration accumulated during the dry season. Apparent Zn, Cu, Cd, and Pb concentration gradients were observed, but no significant differences between stations for sediment, water, and A. senilis. Concentrations in sediment increased from stations close to Abidjan Harbor towards farther stations, while concentrations in A. senilis showed a reverse gradient. The distribution gradient of A. senilis indicates pollution from local sources, but a transplant experiment is needed to better understand the observed spatial trend. Zn and Cu concentrations may pose little risk to human health and the environment, but they are the highest on the regional scale. On the contrary, Cd and Pb concentrations in A. senilis exceeded the maximum allowable limits set by the European Commission. Complementary studies including chemical speciation should be considered to provide a more accurate assessment of the risk of heavy metals to the environment.


Subject(s)
Arcidae/chemistry , Estuaries , Geologic Sediments/analysis , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , Animals , Cadmium/analysis , Copper/analysis , Cote d'Ivoire , Environmental Monitoring , Geography , Lead/analysis , Seasons , Water , Zinc/analysis
SELECTION OF CITATIONS
SEARCH DETAIL