Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Sci Rep ; 11(1): 13640, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34210998

ABSTRACT

Euglena gracilis is widely utilized as food or supplement to promote human and animal health, as it contains rich nutrients. In this study, we administered spray-dried powder of E. gracilis and paramylon, ß-glucan stored in E. gracilis cells, to A4gnt knockout (KO) mice. A4gnt KO mice are a mutant mouse model that spontaneously develops gastric cancer through hyperplasia-dysplasia-adenocarcinoma sequence in the antrum of the stomach, and we observed the effects of E. gracilis and paramylon on the early involvements of A4gnt KO mice. Male and female 10-week-old A4gnt KO mice and their age-matched wildtype C57BL/6J mice were orally administered with 50 mg of E. gracilis or paramylon suspended in saline or saline as a control. After 3-week administration, animals were euthanatized and the stomach was examined histopathologically and immunohistochemically. Gene expression patterns of the stomach, which have been reported to be altered with A4gnt KO, and IgA concentration in small intestine were also analyzed with real-time PCR and ELISA, respectively. Administration of Euglena significantly reduced the number of stimulated CD3-positive T-lymphocytes in pyloric mucosa of A4gnt KO mice and tend to reduce polymorphonuclear leukocytes infiltration. Euglena administration further downregulated the expression of Il11 and Cxcl1 of A4gnt KO mice. Euglena administration also affected IgA concentration in small intestinal contents of A4gnt KO mice. Paramylon administration reduced the number of CD3-positive lymphocytes in pyloric mucosa of A4gnt KO mice, and downregulated the expressions of Il11 and Ccl2 of A4gnt KO mice. Although we found no significant effects on gross and microscopic signs of gastric dysplasia and cell proliferation, the present study suggests that the administration of Euglena and paramylon may ameliorate the early involvements of A4gnt mice through the effects on inflammatory reactions in the gastric mucosa. The cancer-preventing effects should be studied with long-term experiments until actual gastric cancer formation.


Subject(s)
Anticarcinogenic Agents/therapeutic use , Euglena gracilis , Glucans/therapeutic use , N-Acetylglucosaminyltransferases/genetics , Stomach Neoplasms/prevention & control , Administration, Oral , Animals , Anticarcinogenic Agents/administration & dosage , Anticarcinogenic Agents/analysis , Dietary Supplements/analysis , Euglena gracilis/chemistry , Female , Gastric Mucosa/drug effects , Gastric Mucosa/pathology , Glucans/administration & dosage , Glucans/analysis , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology
2.
Bioorg Med Chem Lett ; 12(1): 81-4, 2002 Jan 07.
Article in English | MEDLINE | ID: mdl-11738578

ABSTRACT

To improve water solubility and to study structure-activity relationships, we modified the structure of the pyrimidine nucleus of each of a series of potent ET(A) antagonists, 3a and 4a, at the 2-position. In a previous study, each of these antagonists showed an extremely high affinity for the ET(A) receptor in porcine aortic membrane (IC(50) 3a; < 0.001 nM, 4a; 0.0039 nM). Two modification methods, one being the addition of organolithium followed by DDQ oxidation and the other being the nucleophilic substitution of 2-(methylsulfonyl)pyrimidine, were applied individually to synthesize 2-substituted-4-sulfonamidopyrimidine derivatives. The introduction of aryl, heteroaryl, alkyl, amino, alkoxy, or alkylthio groups into the 2-position varied the affinity. Derivatives with hydrophilic groups at the 2-position showed higher water solubility but tended to reduce the affinity for the ET(A) receptor.


Subject(s)
Endothelins/antagonists & inhibitors , Pyrimidines/pharmacology , Sulfonamides/pharmacology , Animals , Aorta , Binding, Competitive , Drug Evaluation, Preclinical , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Solubility , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Swine
SELECTION OF CITATIONS
SEARCH DETAIL