Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Cell Rep ; 27(9): 2785-2797.e3, 2019 05 28.
Article in English | MEDLINE | ID: mdl-31141699

ABSTRACT

Selenium (Se) is an essential trace element because of its presence in selenoproteins in the form of selenocysteine residue. Both Se deficiency, which compromises selenoprotein functions, and excess Se, which is toxic, have been associated with altered redox homeostasis and adverse health conditions. Surprisingly, we found that, although Se deficiency led to a drastic decline in selenoprotein expression, mice subjected to this dietary regimen for their entire life had normal lifespans. To understand the molecular mechanisms involved, we performed systemic analyses at the level of metabolome, transcriptome, and microRNA profiling. These analyses revealed that Se deficiency reduced amino acid levels, elevated mononucleotides, altered metabolism, and activated signaling pathways linked to longevity-related nutrient sensing. The data show that the metabolic control associated with nutrient sensing coordinately responds to suppressed selenoprotein functions, resulting in normal lifespan under Se deficiency.


Subject(s)
Longevity , Metabolome , MicroRNAs , Selenium/deficiency , Selenoproteins/metabolism , Transcriptome , Amino Acids/analysis , Animals , Brain/drug effects , Brain/metabolism , Diet , Female , Liver/drug effects , Liver/metabolism , Male , Mice , Nucleotides/analysis , Rats , Selenium/administration & dosage , Selenoproteins/genetics
2.
Genome Res ; 25(9): 1256-67, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26194102

ABSTRACT

Selenoproteins are proteins that incorporate selenocysteine (Sec), a nonstandard amino acid encoded by UGA, normally a stop codon. Sec synthesis requires the enzyme Selenophosphate synthetase (SPS or SelD), conserved in all prokaryotic and eukaryotic genomes encoding selenoproteins. Here, we study the evolutionary history of SPS genes, providing a map of selenoprotein function spanning the whole tree of life. SPS is itself a selenoprotein in many species, although functionally equivalent homologs that replace the Sec site with cysteine (Cys) are common. Many metazoans, however, possess SPS genes with substitutions other than Sec or Cys (collectively referred to as SPS1). Using complementation assays in fly mutants, we show that these genes share a common function, which appears to be distinct from the synthesis of selenophosphate carried out by the Sec- and Cys- SPS genes (termed SPS2), and unrelated to Sec synthesis. We show here that SPS1 genes originated through a number of independent gene duplications from an ancestral metazoan selenoprotein SPS2 gene that most likely already carried the SPS1 function. Thus, in SPS genes, parallel duplications and subsequent convergent subfunctionalization have resulted in the segregation to different loci of functions initially carried by a single gene. This evolutionary history constitutes a remarkable example of emergence and evolution of gene function, which we have been able to trace thanks to the singular features of SPS genes, wherein the amino acid at a single site determines unequivocally protein function and is intertwined to the evolutionary fate of the entire selenoproteome.


Subject(s)
Biological Evolution , Phosphotransferases/genetics , Phosphotransferases/metabolism , Animals , Biomarkers , Eukaryota/genetics , Eukaryota/metabolism , Gene Duplication , Humans , Insecta , Phylogeny , Prokaryotic Cells/metabolism , Selection, Genetic , Selenium/metabolism , Selenoproteins/genetics , Selenoproteins/metabolism , Urochordata , Vertebrates
3.
PLoS One ; 9(4): e95518, 2014.
Article in English | MEDLINE | ID: mdl-24751718

ABSTRACT

Selenoproteins exhibit diverse biological functions, most of which are associated with redox control. However, the functions of approximately half of mammalian selenoproteins are not known. One such protein is Selenoprotein O (SelO), the largest mammalian selenoprotein with orthologs found in a wide range of organisms, including bacteria and yeast. Here, we report characterization of mammalian SelO. Expression of this protein could be verified in HEK 293T cells by metabolic labeling of cells with 75Se, and it was abolished when selenocysteine was replaced with serine. A CxxU motif was identified in the C-terminal region of SelO. This protein was reversibly oxidized in a time- and concentration-dependent manner in HEK 293T cells when cells were treated with hydrogen peroxide. This treatment led to the formation of a transient 88 kDa SelO-containing complex. The formation of this complex was enhanced by replacing the CxxU motif with SxxC, but abolished when it was replaced with SxxS, suggesting a redox interaction of SelO with another protein through its Sec residue. SelO was localized to mitochondria and expressed across mouse tissues. Its expression was little affected by selenium deficiency, suggesting it has a high priority for selenium supply. Taken together, these results show that SelO is a redox-active mitochondrial selenoprotein.


Subject(s)
Mammals/metabolism , Mitochondrial Proteins/metabolism , Selenoproteins/metabolism , Amino Acid Sequence , Animals , Diet , Gene Expression Regulation/drug effects , HEK293 Cells , Humans , Hydrogen Peroxide/pharmacology , Male , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/genetics , Molecular Sequence Data , Oxidation-Reduction/drug effects , Protein Transport/drug effects , Reproducibility of Results , Selenium/metabolism , Selenoproteins/chemistry , Selenoproteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL