Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Language
Publication year range
1.
Phytomedicine ; 128: 155505, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38547616

ABSTRACT

BACKGROUND: Fatty liver disease (FLD) poses a significant global health concern worldwide, with its classification into nonalcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (AFLD) contingent upon the presence or absence of chronic and excessive alcohol consumption. The absence of specific therapeutic interventions tailored to FLD at various stages of the disease renders its treatment exceptionally arduous. Despite the fact that FLD and hyperlipidemia are intimately associated, there is still debate over how lipid-lowering medications affect FLD. Proprotein Convertase Subtilisin/ Kexin type 9 (PCSK9) is a serine protease predominantly synthesized in the liver, which has a crucial impact on cholesterol homeostasis. Research has confirmed that PCSK9 inhibitors have prominent lipid-lowering properties and substantial clinical effectiveness, thereby justifying the need for additional exploration of their potential role in FLD. PURPOSE: Through a comprehensive literature search, this review is to identify the relationship and related mechanisms between PCSK9, lipid metabolism and FLD. Additionally, it will assess the pharmacological mechanism and applicability of PCSK9 inhibitors (including naturally occurring PCSK9 inhibitors, such as conventional herbal medicines) for the treatment of FLD and serve as a guide for updating the treatment protocol for such conditions. METHODS: A comprehensive literature search was conducted using several electronic databases, including Pubmed, Medline, Embase, CNKI, Wanfang database and ClinicalTrials.gov, from the inception of the database to 30 Jan 2024. Key words used in the literature search were "fatty liver", "hepatic steatosis", "PCSK9", "traditional Chinese medicine", "herb medicine", "botanical medicine", "clinical trial", "vivo", "vitro", linked with AND/OR. Most of the included studies were within five years. RESULTS: PCSK9 participates in the regulation of circulating lipids via both LDLR dependent and independent pathways, and there is a potential association with de novo lipogenesis. Major clinical studies have demonstrated a positive correlation between circulating PCSK9 levels and the severity of NAFLD, with elevated levels of circulating PCSK9 observed in individuals exposed to chronic alcohol. Numerous studies have demonstrated the potential of PCSK9 inhibitors to ameliorate non-alcoholic steatohepatitis (NASH), potentially completely alleviate liver steatosis, and diminish liver impairment. In animal experiments, PCSK9 inhibitors have exhibited efficacy in alleviating alcoholic induced liver lipid accumulation and hepatitis. Traditional Chinese medicine such as berberine, curcumin, resveratrol, piceatannol, sauchinone, lupin, quercetin, salidroside, ginkgolide, tanshinone, lunasin, Capsella bursa-pastoris, gypenosides, and Morus alba leaves are the main natural PCS9 inhibitors. Excitingly, by inhibiting transcription, reducing secretion, direct targeting and other pathways, traditional Chinese medicine exert inhibitory effects on PCSK9, thereby exerting potential FLD therapeutic effects. CONCLUSION: PCSK9 plays an important role in the development of FLD, and PCSK9 inhibitors have demonstrated beneficial effects on lipid regulation and FLD in both preclinical and clinical studies. In addition, some traditional Chinese medicines have improved the disease progression of FLD by inhibiting PCSK9 and anti-inflammatory and antioxidant effects. Consequently, the inhibition of PCSK9 appears to be a promising therapeutic strategy for FLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , PCSK9 Inhibitors , Animals , Humans , Fatty Liver/drug therapy , Fatty Liver, Alcoholic/drug therapy , Lipid Metabolism/drug effects , Liver/drug effects , Non-alcoholic Fatty Liver Disease/drug therapy , PCSK9 Inhibitors/therapeutic use , Proprotein Convertase 9/metabolism
2.
Phytomedicine ; 116: 154880, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37267694

ABSTRACT

BACKGROUND: Anticoagulants are the main drugs used for the prevention and treatment of thrombosis. Currently, anticoagulant drugs are primarily multitarget heparin drugs, single-target FXa inhibitors and FIIa inhibitors. In addition, some traditional Chinese drugs also have anticoagulant effects, but they are not the main direction of treatment at present. But the anticoagulant drugs mentioned above, all have a common side effect is bleeding. Many other anticoagulation targets are under investigation. With further exploration of coagulation mechanism, how to further determine new anticoagulant targets and how to make traditional Chinese medicine play anticoagulant role have become a new field of exploration. PURPOSE: The purpose of the study was to summarize the recent research progress on coagulation mechanisms, new anticoagulant targets and traditional Chinese medicine. METHODS: A comprehensive literature search was conducted using four electronic databases, including PubMed, Embase, CNKI, Wanfang database and ClinicalTrials.gov, from the inception of the study to 28 Feb 2023. Key words used in the literature search were "anticoagulation", "anticoagulant targets", "new targets", "coagulation mechanisms", "potential anticoagulant", "herb medicine", "botanical medicine", "Chinese medicine", "traditional Chinese medicine", "blood coagulation factor", keywords are linked with AND/OR. Recent findings on coagulation mechanisms, potential anticoagulant targets and traditional Chinese medicine were studied. RESULTS: The active components extracted from the Chinese medicinal herbs, Salvia miltiorrhiza, Chuanxiong rhizoma, safflower and Panax notoginseng have obvious anticoagulant effects and can be used as potential anticoagulant drugs, but the risk of bleeding is unclear. TF/FVIIa, FVIII, FIX, FXI, FXII, and FXIII have all been evaluated as targets in animal studies or clinical trials. FIX and FXI are the most studied anticoagulant targets, but FXI inhibitors have shown stronger advantages. CONCLUSION: This review of potential anticoagulants provides a comprehensive resource. Literature analysis suggests that FXI inhibitors can be used as potential anticoagulant candidates. In addition, we should not ignore the anticoagulant effect of traditional Chinese medicine, and look forward to more research and the emergence of new drugs.


Subject(s)
Drugs, Chinese Herbal , Plants, Medicinal , Animals , Anticoagulants/pharmacology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Medicine, Chinese Traditional , Blood Coagulation
3.
J Inorg Biochem ; 236: 111972, 2022 11.
Article in English | MEDLINE | ID: mdl-36087434

ABSTRACT

Excessive organophosphate flame retardant (OPFR) use in consumer products has been reported to increase human disease susceptibility. However, the adverse effects of tris(2-chloroethyl) phosphate (TCEP) (a chlorinated alkyl OPFR) on the heart remain unknown. In this study, we tested whether cardiac fibrosis occurred in animal models of TCEP (10 mg/kg b.w./day) administered continuously by gavage for 30 days and evaluated the specific role of sarco/endoplasmic reticulum Ca2+ ATPase (SERCA). First, we confirmed that TCEP could trigger cardiac fibrosis by histopathological observation and cardiac fibrosis markers. We further verified that cardiac fibrosis occurred in animal models of TCEP exposure accompanied by SERCA2a, SERCA2b and SERCA2c downregulation. Notably, inductively coupled plasma-mass spectrometry (ICP-MS) analysis revealed that the cardiac concentrations of Ca2+ increased by 45.3% after TCEP exposure. Using 4-Isopropoxy-N-(2-methylquinolin-8-yl)benzamide (CDN1163, a small molecule SERCA activator), we observed that Ca2+ overload and subsequent cardiac fibrosis caused by TCEP were both alleviated. Simultaneously, the protein levels of endoplasmic reticulum (ER) markers (protein kinase R-like endoplasmic reticulum kinase (PERK), inositol requiring protein 1α (IRE1α), eukaryotic initiation factor 2 α (eIF2α)) were upregulated by TCEP, which could be abrogated by CDN1163 pretreatment. Furthermore, we observed that CDN1163 supplementation prevented overactive autophagy induced by TCEP in the heart. Mechanistically, TCEP could lead to Ca2+ overload by inhibiting the expression of SERCA, thereby triggering ER stress and overactive autophagy, eventually resulting in cardiac fibrosis. Together, our results suggest that the Ca2+ overload/ER stress/autophagy axis can act as a driver of cardiotoxicity induced by TCEP.


Subject(s)
Endoribonucleases , Flame Retardants , Aminoquinolines , Animals , Autophagy , Benzamides/metabolism , Calcium/metabolism , Endoplasmic Reticulum , Endoplasmic Reticulum Stress , Endoribonucleases/metabolism , Endoribonucleases/pharmacology , Eukaryotic Initiation Factor-2/metabolism , Eukaryotic Initiation Factor-2/pharmacology , Fibrosis , Flame Retardants/metabolism , Flame Retardants/pharmacology , Humans , Inositol/metabolism , Inositol/pharmacology , Organophosphates , Phosphates/metabolism , Phosphines , Protein Serine-Threonine Kinases , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL