Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Oxid Med Cell Longev ; 2020: 8686248, 2020.
Article in English | MEDLINE | ID: mdl-33014279

ABSTRACT

This study is aimed at evaluating the regulatory mechanism of quercetin on lipid metabolism in the ileum of broilers to better understand these pathways decreasing abdominal fat. 480 chickens were randomly divided into 4 groups (control, 0.02% quercetin, 0.04% quercetin, and 0.06% quercetin). Breast muscle, thigh muscle, and abdominal fat pad were removed and weighed at 42 d of age. Serum was obtained by centrifuging blood samples from the jugular vein (10 ml) to determine high-density lipoprotein (HDL), total cholesterol (TC), low-density lipoprotein (LDL), triglyceride (TG), leptin, and adiponectin using ELISA. About 5 g of the ileum was harvested and immediately frozen in liquid nitrogen for RNA-seq. Then, the confirmation of RNA-seq results by the Real-Time Quantitative PCR (RT-qPCR) method was evaluated using Pearson's correlation. Compared with control, abdominal fat percentage was significantly decreased with increasing quercetin supplementation, and the best result was obtained at 0.06% dietary quercetin supplementation (P < 0.01). Breast muscle percentage was significantly decreased at 0.02% quercetin (P < 0.01), and thigh muscle percentage tended to increase (P = 0.078). Meanwhile, 0.04% and 0.06% quercetin significantly decreased TG (P < 0.01), TC (P < 0.01), and LDL content (P < 0.05) in serum. Serum leptin and adiponectin contents were significantly increased by 0.04% and 0.06% dietary quercetin supplementation, compared with the control (P < 0.01). Analyses of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) database were used to identify differently expressed genes and lipid metabolism pathways. Quercetin decreased abdominal fat percentage through regulating fat digestion and absorption, glycerophospholipid metabolism, AMPK signaling pathway, fatty acid degradation, and cholesterol metabolism.


Subject(s)
Ileum/metabolism , Lipid Metabolism/drug effects , Quercetin/pharmacology , AMP-Activated Protein Kinases/metabolism , Abdominal Fat/drug effects , Abdominal Fat/metabolism , Abdominal Fat/physiology , Animals , Chickens , Dietary Supplements , Gene Expression Regulation/drug effects , Gene Ontology , Glycerophospholipids/metabolism , Intestinal Mucosa/metabolism , Lipid Metabolism/genetics , Lipoproteins, HDL/blood , Muscle, Skeletal/drug effects , Muscle, Skeletal/physiology , Signal Transduction/drug effects , Triglycerides/blood
2.
Oxid Med Cell Longev ; 2020: 9585047, 2020.
Article in English | MEDLINE | ID: mdl-32104545

ABSTRACT

Quercetin, a flavonoid found in fruits and vegetables, is widely distributed as a secondary metabolite in the plant kingdom. Oxidative stress plays a role in the pathogenesis of diabetes mellitus (DM). The present study investigated the effects of quercetin dietary supplementation on streptozotocin- (STZ-) induced hyperglycemic Arbor Acre (AA) broilers by determining the levels of fasting blood glucose (FBG), fasting insulin (FINS), biochemical indicators, oxidative stress markers, inflammatory cytokines content, antioxidant enzymes activities in tissues, and mRNA expression of genes relating to the insulin signaling pathway. Three hundred one-day-old healthy AA broilers were randomly assigned into 5 treatments; A, control healthy broilers; B, STZ-induced broilers; C, STZ-induced broiler dietary supplemented with 0.02% quercetin; D, STZ-induced broiler dietary supplemented with 0.04% quercetin; and E, STZ-induced broiler dietary supplemented with 0.06% quercetin. The results showed that quercetin supplementation relieved the side effects of STZ-induced oxidative stress by changing activities of antioxidant enzymes, decreasing malondialdehyde (MDA) and nitric oxide (NO) levels, activating expression of genes relating to PI3K/PKB signaling pathway that modulate glucose metabolism and reduce oxidative damage, thereby decreasing FBG and increasing FINS levels. These findings suggest that quercetin exhibits a protective effect in STZ-induced hyperglycemic AA broilers via decreasing oxidative stress.


Subject(s)
Hyperglycemia/chemically induced , Hyperglycemia/drug therapy , Quercetin/therapeutic use , Streptozocin/toxicity , Animals , Antioxidants/metabolism , Blood Glucose/metabolism , Chickens , Dietary Supplements , Hyperglycemia/metabolism , Malondialdehyde/metabolism , Nitric Oxide/metabolism , Oxidative Stress/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL