Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Appl Microbiol Biotechnol ; 107(24): 7391-7401, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37755508

ABSTRACT

Aromatic secondary metabolites are widely used in various industries, including the nutraceutical, dietary supplement, and pharmaceutical industries. Their production currently relies on plant extraction. Microbe-based processes have recently attracted attention as sustainable alternatives to plant-based processes. We previously showed that the yeast Pichia pastoris (Komagataella phaffii) is an optimal host for producing aromatic secondary metabolites. Additionally, titers of resveratrol, an aromatic secondary metabolite, increased by 156 % when glycerol was used as a carbon source instead of glucose. However, the mechanisms by which glycerol resulted in higher production has remained unclear. In this study, we aimed to elucidate how P. pastoris produces higher levels of aromatic secondary metabolites from glycerol than from glucose. Titers of p-coumarate, naringenin, and resveratrol increased by 103 %, 118 %, and 157 %, respectively, in natural complex media containing glycerol compared with that in media containing glucose. However, the titers decreased in minimal synthetic medium without amino acids, indicating that P. pastoris cells used the amino acids only when glycerol was the carbon source. Fermentation with the addition of single amino acids showed that resveratrol titers from glycerol varied depending on the amino acid supplemented. In particular, addition of aspartate or tryptophan into the medium improved resveratrol titers by 146 % and 156 %, respectively. These results suggest that P. pastoris could produce high levels of aromatic secondary metabolites from glycerol with enhanced utilization of specific amino acids. This study provides a basis for achieving high-level production of aromatic secondary metabolites by P. pastoris. KEY POINTS: • P. pastoris can produce high levels of aromatic metabolites from glycerol • P. pastoris cells use amino acids only when glycerol is the carbon source • Aromatic metabolite titers from glycerol increase with amino acids utilization.


Subject(s)
Glycerol , Pichia , Glycerol/metabolism , Pichia/genetics , Pichia/metabolism , Amino Acids/metabolism , Resveratrol/metabolism , Carbon/metabolism , Glucose/metabolism , Methanol/metabolism , Recombinant Proteins/metabolism
2.
Biomed Rep ; 1(1): 18-22, 2013 Jan.
Article in English | MEDLINE | ID: mdl-24648886

ABSTRACT

Induced pluripotent stem (iPS) cells are ideal sources of hepatocyte for transplantation into patients experiencing hepatic failure. Growth and transcription factors were analyzed to design a single-step protocol for the differentiation of iPS cells into hepatocytes. The expression of transcription factors was analyzed using reverse transcription-polymerase chain reaction (RT-PCR) and compared among iPS cells, as well as fetal and adult liver cells. iPS cells were cultured with growth factors and RT-PCR was performed to analyze the expression of transcription factors. iPS cells were introduced with transcription factors, cultured with growth factors and subjected to real-time quantitative PCR. Indocyanine green (ICG) was added to the medium as a hepatocyte marker. Sox17, GATA4, GATA6, FoxA2, HEX, HNF4α and C/EBPα were expressed in fetal and adult liver cells, but not in iPS cells. Sox17, GATA6 and HNF4α were expressed after exposure a combination of oncostatin M, epidermal growth factor, retinoic acid, dexamethasone and ITS (OERDITS). When iPS cells were introduced with FoxA2, GATA4, HEX and C/EBPα and cultured with OERDITS for 8 days, the cells expressed α-fetoprotein, δ-like (Dlk)-1 and γ-glutamyl transpeptidase (GTP), and ICG uptake was observed. Exposure to FoxA2, GATA4, HEX and C/EBPα and culturing with OERDITS supplementation potentially serves as a single-step inducer for the differentiation of iPS cells into hepatic progenitor-like cells within 8 days.

SELECTION OF CITATIONS
SEARCH DETAIL