Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Front Pharmacol ; 14: 1148155, 2023.
Article in English | MEDLINE | ID: mdl-36998615

ABSTRACT

Metformin as an oral glucose-lowering drug is used to treat type 2 diabetic mellitus. Considering the relatively high incidence of cardiovascular complications and other metabolic diseases in diabetic mellitus patients, a combination of metformin plus herbal supplements is a preferrable way to improve the therapeutic outcomes of metformin. Ginseng berry, the fruit of Panax ginseng Meyer, has investigated as a candidate in metformin combination mainly due to its anti-hyperglycemic, anti-hyperlipidemic, anti-obesity, anti-hepatic steatosis and anti-inflammatory effects. Moreover, the pharmacokinetic interaction of metformin via OCTs and MATEs leads to changes in the efficacy and/or toxicity of metformin. Thus, we assessed how ginseng berry extract (GB) affects metformin pharmacokinetics in mice, specially focusing on the effect of the treatment period (i.e., 1-day and 28-day) of GB on metformin pharmacokinetics. In 1-day and 28-day co-treatment of metformin and GB, GB did not affect renal excretion as a main elimination route of metformin and GB therefore did not change the systemic exposure of metformin. Interestingly, 28-day co-treatment of GB increased metformin concentration in the livers (i.e., 37.3, 59.3% and 60.9% increases versus 1-day metformin, 1-day metformin plus GB and 28-day metformin groups, respectively). This was probably due to the increased metformin uptake via OCT1 and decreased metformin biliary excretion via MATE1 in the livers. These results suggest that co-treatment of GB for 28 days (i.e., long-term combined treatment of GB) enhanced metformin concentration in the liver as a pharmacological target tissue of metformin. However, GB showed a negligible impact on the systemic exposure of metformin in relation to its toxicity (i.e., renal and plasma concentrations of metformin).

3.
Planta Med ; 87(8): 642-651, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33498088

ABSTRACT

Moracin C from Morus alba fruits, also known as the mulberry, has been proven to exhibit inhibitory activities against lipoxygenase enzymes, TNF-α and interleukin-1ß secretion, and proprotein convertase subtilisin/kexin type 9 expression. Despite the various pharmacological activities of moracin C, its pharmacokinetic characteristics have yet to be reported. Here, the pharmacokinetic parameters and tissue distribution of moracin C have been investigated in mice, and the plasma concentration of moracin C with multiple dosage regimens was simulated via pharmacokinetic modeling. Our results showed that moracin C was rapidly and well absorbed in the intestinal tract, and was highly distributed in the gastrointestinal tract, liver, kidneys, and lungs. Moracin C was distributed in the ileum, cecum, colon, and liver at a relatively high concentration compared with its plasma concentration. It was extensively metabolized in the liver and intestine, and its glucuronidated metabolites were proposed. In addition, the simulated plasma concentrations of moracin C upon multiple treatments (i.e., every 12 and 24 h) were suggested. We suggest that the pharmacokinetic characteristics of moracin C would be helpful to select a disease model for in vivo evaluation. The simulated moracin C concentrations under various dosage regimens also provide helpful knowledge to support its pharmacological effect.


Subject(s)
Benzofurans , Morus , Stilbenes , Animals , Mice , Plant Extracts
4.
J Ethnopharmacol ; 238: 111892, 2019 Jun 28.
Article in English | MEDLINE | ID: mdl-31004727

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Flower and flower bud of Lonicera japonica, Lonicerae Flos, have been popularly used as medicinal plant for the treatment of clearing heat and thirst, thereby improving diabetic or diabetic associated symptoms (thirst and poor eyesight). AIM OF THE STUDY: Organic cation transporters (OCTs) and multi-drug and toxin extrusion proteins (MATEs) are known to play important roles in metformin transport in the liver and kidneys. Thus, there might be interactions between Lonicerae Flos and metformin via OCTs and MATEs. Also treatment period has been issued in transporter-mediated drug interactions. The objective of this study was to determine the effect of Lonicerae Flos ethanol extract (LJ) on metformin pharmacokinetics and its glucose lowering activity in different treatment periods. MATERIALS AND METHODS: Effect of LJ on metformin uptake was evaluated in vitro HEK-293 cells expressing human OCTs or MATEs. Treatment period-dependent impact of LJ on systemic exposure and hepatic distribution of metformin as well as its glucose tolerance activity were assessed in in vivo rats. RESULTS: LJ substantially inhibited MATE1-mediated metformin uptake in vitro. In evaluating treatment period effects of LJ and metformin, 1-, 7-, and 28-day co-treatments of LJ with metformin did not change systemic exposure of metformin compared to those in metformin alone. Whereas, 28-day co-treatment of LJ with metformin increased metformin concentration in liver as a pharmacological target site of metformin. It could be due to the reduced MATE1-mediated metformin efflux from hepatocytes to bile by MATE1 inhibition in liver. Glucose tolerance activity was also enhanced by 28-day co-treatment of LJ and metformin compared to metformin alone. CONCLUSIONS: In 28-day co-treatment of LJ and metformin, LJ increased metformin concentration in liver and improved glucose tolerance activity without systemic exposure change of metformin, suggesting the importance to consider treatment period effect and both systemic exposure and tissue distribution in drug interactions.


Subject(s)
Liver/metabolism , Lonicera/chemistry , Metformin/pharmacokinetics , Plant Extracts/pharmacokinetics , Animals , Drug Interactions , HEK293 Cells , Humans , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/pharmacokinetics , Male , Metformin/administration & dosage , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Rats , Tissue Distribution
5.
Phytother Res ; 32(6): 1004-1013, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29480578

ABSTRACT

The synergistic activity of Houttuynia cordata ethanol extract (HCT) and metformin combination in diabetic rats has been previously reported, but the fundamental causes remain unsolved. Organic cation transporters (OCTs) and multidrug and toxin extrusion proteins (MATEs) transport metformin to the liver and kidneys. Therefore, pharmacological activity and systemic exposure of metformin in HCT-metformin combination were determined from pharmacokinetic change and glucose-lowering activity using in vitro HEK-293 cells expressing human OCTs or human MATEs and in vivo rats. HCT inhibited human OCT2 and human MATE1-mediated metformin transports in vitro. In in vivo rats, treatment with HCT and metformin for 28 days in rats (28MH rats) reduced the rat Oct2-mediated renal excretion of metformin and thereby the increased systemic exposure of metformin compared with only metformin-treated rats for 28 days (28M rats). In 28MH rats, rat Oct1-mediated metformin uptake into the liver was enhanced, leading to an improved glucose-lowering effect without hypoglycaemia compared with 28M rats. There was no impairment of renal function in HCT and metformin treatments. These results suggest that HCT-metformin combination therapy is applicable in terms of efficacy and safety.


Subject(s)
Antiporters/metabolism , Diabetes Mellitus, Experimental/drug therapy , Drugs, Chinese Herbal/chemistry , Hypoglycemic Agents/therapeutic use , Liver/drug effects , Metformin/therapeutic use , Organic Cation Transport Proteins/metabolism , Animals , Diabetes Mellitus, Experimental/metabolism , Houttuynia , Humans , Hypoglycemic Agents/pharmacology , Male , Metformin/pharmacology , Rats , Rats, Sprague-Dawley
6.
Molecules ; 23(2)2018 Feb 09.
Article in English | MEDLINE | ID: mdl-29425147

ABSTRACT

Herb-drug interaction (HDI) limits clinical application of herbs and drugs, and inhibition of herbs towards uridine diphosphate (UDP)-glucuronosyltransferases (UGTs) has gained attention as one of the important reasons to cause HDIs. Sauchinone, an active lignan isolated from aerial parts of Saururus chinensis (Saururacease), possesses anti-oxidant, anti-inflammatory, and anti-viral activities. In pharmacokinetics of sauchinone, sauchinone is highly distributed to the liver, forming extensive metabolites of sauchinone via UGTs in the liver. Thus, we investigated whether sauchinone inhibited UGTs to explore potential of sauchinone-drug interactions. In human liver microsomes (HLMs), sauchinone inhibited activities of UGT1A1, 1A3, 1A6, and 2B7 with IC50 values of 8.83, 43.9, 0.758, and 0.279 µM, respectively. Sauchinone also noncompetitively inhibited UGT1A6 and 2B7 with Ki values of 1.08 and 0.524 µM, respectively. In in vivo interaction study using mice, sauchinone inhibited UGT2B7-mediated zidovudine metabolism, resulting in increased systemic exposure of zidovudine when sauchinone and zidovudine were co-administered together. Our results indicated that there is potential HDI between sauchinone and drugs undergoing UGT2B7-mediated metabolism, possibly contributing to the safe use of sauchinone and drug combinations.


Subject(s)
Benzopyrans/chemistry , Dioxoles/chemistry , Glucuronosyltransferase/antagonists & inhibitors , Plant Extracts/chemistry , Tracheophyta/chemistry , Animals , Benzopyrans/isolation & purification , Benzopyrans/pharmacology , Dioxoles/isolation & purification , Dioxoles/pharmacology , Drug Interactions , Glucuronosyltransferase/metabolism , Humans , Male , Mice , Microsomes, Liver/drug effects , Microsomes, Liver/enzymology , Thermodynamics , Zidovudine/pharmacokinetics
7.
J Med Food ; 20(8): 727-733, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28654307

ABSTRACT

In this study, the anti-inflammatory effects of mangosteen extract (MGE) on dextran sulfate sodium (DSS)-induced colitis in mice and nuclear factor (NF)-κB pathway modulation were investigated. Acute colitis was induced by administering 3% DSS in drinking water for 7 days, and three groups of Institute of Cancer Research mice were treated with 30 and 120 mg/kg MGE or 5-aminosalicylic acid for 7 days; an additional two groups of mice served as healthy and disease controls. The results indicated that MGE significantly prevented weight loss, reduced disease activity index scores, and preserved colon length compared with the findings in the untreated colitis group. MGE downregulated the NF-κB pathway by inhibiting the phosphorylation of IκB and IKK in a dose-dependent manner. These findings suggest that MGE alleviates ulcerative colitis by modulating the NF-κB pathway.


Subject(s)
Colitis, Ulcerative/drug therapy , Dextran Sulfate/chemistry , Garcinia mangostana/chemistry , NF-kappa B/immunology , Plant Extracts/administration & dosage , Animals , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/genetics , Colitis, Ulcerative/immunology , Dextran Sulfate/adverse effects , Disease Models, Animal , Humans , Male , Mice , Mice, Inbred ICR , NF-kappa B/genetics , Signal Transduction
8.
PLoS One ; 10(7): e0131587, 2015.
Article in English | MEDLINE | ID: mdl-26176540

ABSTRACT

The information about a marker compound's pharmacokinetics in herbal products including the characteristics of absorption, distribution, metabolism, excretion (ADME) is closely related to the efficacy/toxicity. Also dose range and administration route are critical factors to determine the ADME profiles. Since the supply of a sufficient amount of a marker compound in in vivo study is still difficult, pharmacokinetic investigations which overcome the limit of blood collection in mice are desirable. Thus, we have attempted to investigate concurrently the ADME and proposed metabolite identification of α-mangostin, a major constituent of mangosteen, Garcinia mangostana L, in mice with a wide dose range using an in vitro as well as in vivo automated micro-sampling system together. α-mangostin showed dose-proportional pharmacokinetics at intravenous doses of 5-20 mg/kg and oral doses of 10-100 mg/kg. The gastrointestinal absorption of α-mangostin was poor and the distribution of α-mangostin was relatively high in the liver, intestine, kidney, fat, and lung. α-mangostin was extensively metabolized in the liver and intestine. With regards to the formation of metabolites, the glucuronidated, bis-glucuronidated, dehydrogenated, hydrogenated, oxidized, and methylated α-mangostins were tentatively identified. We suggest that these dose-independent pharmacokinetic characteristics of α-mangostin in mice provide an important basis for preclinical applications of α-mangostin as well as mangosteen. In addition, these experimental methods can be applied to evaluate the pharmacokinetics of natural products in mice.


Subject(s)
Anti-Allergic Agents/pharmacokinetics , Garcinia mangostana/chemistry , Xanthones/pharmacokinetics , Administration, Oral , Animals , Anti-Allergic Agents/administration & dosage , Chromatography, Liquid , Drug Evaluation, Preclinical , Inactivation, Metabolic , Male , Mice, Inbred ICR , Tandem Mass Spectrometry , Tissue Distribution , Xanthones/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL