Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Phytomedicine ; 108: 154508, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36332384

ABSTRACT

BACKGROUND: Myeloid cell-mediated immunosuppression is a major obstacle to checkpoint blockade immunotherapy. We previously reported that total biflavonoids extract from Selaginella doederleinii (TBESD) and a flavone monomer isolated from TBESD, named Delicaflavone, have favorable anti-tumor activity. However, whether TBESD and Delicaflavone could affect the tumor microenvironment (TME) remains unclear. PURPOSE: In this study, we focused on the TME to determine whether TBESD and Delicaflavone could restore anti-tumor immune response. METHODS: 4T1 tumor-bearing immunocompetent BALB/c mice and T cell-deficient nude mice were used to examine the effect of TBESD on T cell-mediated immunity in vivo. Multi-parameter flow cytometry was conducted to evaluate the impacts of TBESD on TME. Primary cells, including murine CD8+ T cells, tumor associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) were prepared to investigate the modulatory activities of TBESD on immune cells. It was further determined whether Delicaflavone or Amentoflavone, two typical functional biflavones from TBESD, mediated those effects of TBESD. Finally, the impacts of TBESD and Delicaflavone on Jak1/STAT6 signaling pathway were explored via western blot. RESULTS: We found that TBESD significantly reduced 4T1 tumor growth in immunocompetent BALB/c mice, but not in nude mice. This effect was associated with the regulation of TME, shown as an increase in functional T cells and M1 phenotype TAMs (M1-TAMs), and a decrease in M2 phenotype TAMs (M2-TAMs), monocytic-MDSCs (M-MDSCs) and regulatory T cells (Tregs) in TBESD-treated BALB/c mouse 4T1 tumors. It was found ex vivo that TBESD restrained the viability and immunosuppressive properties of M2-TAMs and M-MDSCs, especially for the loss of arginase-1 expression. Additionally, TBESD re-educated M2-TAMs to an M1 like phenotype. Further investigations determined that Delicaflavone predominantly mediated the immuno-modulatory activities of TBESD both ex vivo and in vivo. Finally, Delicaflavone and TBESD blocked Jak1/STAT6 signaling pathway in M2-TAMs and MDSCs. CONCLUSION: The present study suggests Delicaflavone as a potent natural inhibitor of M2-TAMs and MDSCs, which fills the gap in knowledge on the immuno-modulatory effects of TBESD and Delicaflavone, and could have translational implications to improve the efficacy of cancer immunotherapy.


Subject(s)
Neoplasms , Selaginellaceae , Animals , Mice , Mice, Nude , CD8-Positive T-Lymphocytes , Myeloid Cells , Mice, Inbred BALB C , Immunity , Immunosuppression Therapy , Cell Line, Tumor , Tumor Microenvironment
2.
J Neurosci ; 42(29): 5755-5770, 2022 07 20.
Article in English | MEDLINE | ID: mdl-35705488

ABSTRACT

Extinguishing the previously acquired fear is critical for the adaptation of an organism to the ever-changing environment, a process requiring the engagement of GABAA receptors (GABAARs). GABAARs consist of tens of structurally, pharmacologically, and functionally heterogeneous subtypes. However, the specific roles of these subtypes in fear extinction remain largely unexplored. Here, we observed that in the medial prefrontal cortex (mPFC), a core region for mood regulation, the extrasynaptically situated, δ-subunit-containing GABAARs [GABAA(δ)Rs], had a permissive role in tuning fear extinction in male mice, an effect sharply contrasting to the established but suppressive role by the whole GABAAR family. First, the fear extinction in individual mice was positively correlated with the level of GABAA(δ)R expression and function in their mPFC. Second, knockdown of GABAA(δ)R in mPFC, specifically in its infralimbic (IL) subregion, sufficed to impair the fear extinction in mice. Third, GABAA(δ)R-deficient mice also showed fear extinction deficits, and re-expressing GABAA(δ)Rs in the IL of these mice rescued the impaired extinction. Further mechanistic studies demonstrated that the permissive effect of GABAA(δ)R was associated with its role in enabling the extinction-evoked plastic regulation of neuronal excitability in IL projection neurons. By contrast, GABAA(δ)R had little influence on the extinction-evoked plasticity of glutamatergic transmission in these cells. Altogether, our findings revealed an unconventional and permissive role of extrasynaptic GABAA receptors in fear extinction through a route relying on nonsynaptic plasticity.SIGNIFICANCE STATEMENT The medial prefrontal cortex (mPFC) is one of the kernel brain regions engaged in fear extinction. Previous studies have repetitively shown that the GABAA receptor (GABAAR) family in this region act to suppress fear extinction. However, the roles of specific GABAAR subtypes in mPFC are largely unknown. We observed that the GABAAR-containing δ-subunit [GABAA(δ)R], a subtype of GABAARs exclusively situated in the extrasynaptic membrane and mediating the tonic neuronal inhibition, works oppositely to the whole GABAAR family and promotes (but does not suppress) fear extinction. More interestingly, in striking contrast to the synaptic GABAARs that suppress fear extinction by breaking the extinction-evoked plasticity of glutamatergic transmission, the GABAA(δ)R promotes fear extinction through enabling the plastic regulation of neuronal excitability in the infralimbic subregion of mPFC. Our findings thus reveal an unconventional role of GABAA(δ)R in promoting fear extinction through a route relying on nonsynaptic plasticity.


Subject(s)
Extinction, Psychological , Fear , Animals , Fear/physiology , Male , Mice , Neurons/metabolism , Plastics/metabolism , Plastics/pharmacology , Prefrontal Cortex/physiology , Receptors, GABA-A/metabolism , gamma-Aminobutyric Acid/pharmacology
3.
Int Immunopharmacol ; 93: 107395, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33529916

ABSTRACT

Programmed death-ligand 1 (PD-L1) is an immune checkpoint molecule, that is overexpressed in non-small cell lung cancer (NSCLC) and has been associated with the response to anti-PD-1/PD-L1 immunotherapy. Z-guggulsterone (Z-GS), an active compound extracted from the gumresin of the Commiphora mukul tree, has been shown to have anti-tumor effects in NSCLC in our previous study. However, whether Z-GS could affect PD-L1 expression levels in tumor cells remains unknown. In this study, we verified the inhibitory effects of Z-GS on NSCLC cell viability and cell cycle progression in vitro, and mouse Lewis lung carcinoma (LLC) tumor growth in vivo. Notably, Z-GS treatment increased PD-L1 surface and mRNA expression levels, and gene transcription in NSCLC cells, in a dose- and time-dependent manner. Mechanistic experiments showed that the upregulation of PD-L1 was mediated, partly by farnesoid X receptor inhibition, and partly by the activation of the Akt and Erk1/2 signaling pathways in Z-GS-treated NSCLC cells. In vivo, Z-GS treatment dose-dependently increased PD-L1 expression levels in mouse LLC tumor models. Overall, our findings demonstrated a promoting role for Z-GS in PD-L1 expression in NSCLC and provided mechanistic insights, that may be used for further investigation into synergistic combined therapies.


Subject(s)
B7-H1 Antigen/metabolism , Carcinoma, Lewis Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Pregnenediones/therapeutic use , Receptors, Cytoplasmic and Nuclear/metabolism , Skin Neoplasms/drug therapy , Animals , B7-H1 Antigen/genetics , Cell Line, Tumor , Commiphora , Humans , MAP Kinase Signaling System , Mice , Mice, Inbred C57BL , Neoplasms, Experimental , Oncogene Protein v-akt/metabolism , RNA, Small Interfering/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL