Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Therapeutic Methods and Therapies TCIM
Database
Type of study
Country/Region as subject
Language
Publication year range
1.
Clin Microbiol Infect ; 29(3): 353-359, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36209990

ABSTRACT

OBJECTIVES: Mycobacterium kansasii pulmonary disease is frequently misdiagnosed and treated as tuberculosis, especially in countries with high tuberculosis burden. This study aimed to investigate the drug resistance profile of M.kansasii in patients with M.kansasii pulmonary disease in Shanghai and to determine the variations in drug resistance after 2 months of antimycobacterial treatment. METHODS: All patients with a diagnosis of M.kansasii pulmonary disease from 2017 to 2019 in Shanghai were retrospectively analysed. Whole-genome sequencing was performed, and the minimum inhibitory concentration (MIC) to antimycobacterial drugs was measured using the broth microdilution method. RESULTS: In total, 191 patients had a diagnosis of M.kansasii pulmonary disease. Of them, 24.1% (46/191) had persistent positive culture after 2 months of antimycobacterial treatment. Whole-genome sequencing revealed that the 46 paired isolates had a difference of <17 single nucleotide polymorphisms, thus excluding the possibility of exogenous reinfection. More than 90% of the baseline isolates were sensitive to rifampin, clarithromycin, moxifloxacin, or amikacin, whereas a high resistance to ethambutol (118/191, 61.8%) and 4 µg/mL of isoniazid (32/191, 16.8%) were observed. Two isolates presented high resistance to rifamycin (i.e. a rifampin MIC of >8 µg/mL and a rifabutin MIC of 8 µg/mL) both containing the rpoB mutation (S454L). The increase of MIC to rifampin, ethambutol, and/or isoniazid was identified in 50.0% (23/46) of the patients. DISCUSSION: A high prevalence of innate resistance to ethambutol and isoniazid was observed among circulating M.kansasii clinical strains in Shanghai. The increase in drug resistance under empirical antimycobacterial treatment highlighted the urgency of definitive species identification before initiating treatment.


Subject(s)
Lung Diseases , Mycobacterium kansasii , Tuberculosis , Humans , Mycobacterium kansasii/genetics , Ethambutol/pharmacology , Rifampin/pharmacology , Isoniazid/pharmacology , Retrospective Studies , China , Anti-Bacterial Agents/therapeutic use , Tuberculosis/drug therapy , Lung Diseases/drug therapy , Microbial Sensitivity Tests , Antitubercular Agents/pharmacology
2.
Biodegradation ; 27(4-6): 265-276, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27632165

ABSTRACT

The novel trichlorfon (TCF)-degrading bacterium PA F-3, identified as Bacillus tequilensis, was isolated from pesticide-polluted soils by using an effective screening and domesticating procedure. The TCF biodegradation pathways of PA F-3 were also systematically elucidated. As revealed by high-performance liquid chromatography, the TCF residues in the mineral salt medium demonstrated that PA F-3 can utilize TCF as its sole carbon source and reach the highest degradation of 71.1 % at an initial TCF concentration of 200 mg/L within 5 days. The TCF degradation conditions were optimized using response surface methodology as follows: temperature, 28 °C; inoculum amount, 4 %; and initial TCF concentration, 125 mg/L. Biodegradation treatments supplemented with exogenous carbon sources and yeast extract markedly increased the microbial dry weights and TCF-degrading performance of PA F-3, respectively. Meanwhile, five metabolic products of TCF were identified through gas chromatography/mass spectrometry, and a biodegradation pathway was proposed. Results indicated that deoxidation and dehydration (including the cleavage of the P-C phosphonate bond and the C-O bond) were the preferred metabolic reactions of TCF in this TCF-degrading bacterium.


Subject(s)
Bacillus/metabolism , Insecticides/metabolism , Soil Microbiology , Trichlorfon/metabolism , Biodegradation, Environmental
3.
J Agric Food Chem ; 64(21): 4280-7, 2016 Jun 01.
Article in English | MEDLINE | ID: mdl-27161040

ABSTRACT

Trichlorfon (TCF) is an important organophosphate pesticide in agriculture. However, limited information is known about the biodegradation behaviors and kinetics of this pesticide. In this study, a newly isolated fungus (PA F-2) from pesticide-polluted soils was identified as Aspergillus sydowii on the basis of the sequencing of internal transcribed spacer rDNA. This fungus degraded TCF as sole carbon, sole phosphorus, and sole carbon-phosphorus sources in a mineral salt medium (MSM). Optimal TCF degradation conditions were determined through response surface methodology, and results also revealed that 75.31% of 100 mg/L TCF was metabolized within 7 days. The degradation of TCF was accelerated, and the mycelial dry weight of PA F-2 was remarkably increased in MSM supplemented with exogenous sucrose and yeast extract. Five TCF metabolic products were identified through gas chromatography-mass spectrometry. TCF could be initially hydrolyzed to dichlorvos and then be degraded through the cleavage of the P-C bond to produce dimethyl hydrogen phosphate and chloral hydrate. These two compounds were subsequently deoxidized to produce dimethyl phosphite and trichloroethanal. These results demonstrate the biodegradation pathways of TCF and promote the potential use of PA F-2 to bioremediate TCF-contaminated environments.


Subject(s)
Aspergillus/metabolism , Insecticides/metabolism , Organophosphates/metabolism , Trichlorfon/metabolism , Aspergillus/genetics , Aspergillus/growth & development , Aspergillus/isolation & purification , Biodegradation, Environmental , Gas Chromatography-Mass Spectrometry , Insecticides/chemistry , Organophosphates/chemistry , Soil Microbiology , Soil Pollutants/metabolism , Trichlorfon/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL