Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Phytomedicine ; 128: 155355, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38555773

ABSTRACT

BACKGROUND: Five Polyporales mushrooms, namely Amauroderma rugosum, Ganoderma lucidum, G. resinaceum, G. sinense and Trametes versicolor, are commonly used in China for managing insomnia. However, their active components for this application are not fully understood, restricting their universal recognition. PURPOSE: In this study, we aimed to identify sedative-hypnotic compounds shared by these five Polyporales mushrooms. STUDY DESIGN AND METHODS: A UPLC-Q-TOF-MS/MS-based untargeted metabolomics, including OPLS-DA (orthogonal projection of potential structure discriminant analysis) and OPLS (orthogonal projections to latent structures) analysis together with mouse assays, were used to identify the main sedative-hypnotic compounds shared by the five Polyporales mushrooms. A pentobarbital sodium-induced sleeping model was used to investigate the sedative-hypnotic effects of the five mushrooms and their sedative-hypnotic compounds. RESULTS: Ninety-two shared compounds in the five mushrooms were identified. Mouse assays showed that these mushrooms exerted sedative-hypnotic effects, with different potencies. Six triterpenes [four ganoderic acids (B, C1, F and H) and two ganoderenic acids (A and D)] were found to be the main sedative-hypnotic compounds shared by the five mushrooms. CONCLUSION: We for the first time found that these six triterpenes contribute to the sedative-hypnotic ability of the five mushrooms. Our novel findings provide pharmacological and chemical justifications for the use of the five medicinal mushrooms in managing insomnia.


Subject(s)
Hypnotics and Sedatives , Metabolomics , Polyporales , Tandem Mass Spectrometry , Animals , Hypnotics and Sedatives/pharmacology , Hypnotics and Sedatives/chemistry , Mice , Metabolomics/methods , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Polyporales/chemistry , Male , Agaricales/chemistry , Sleep/drug effects , Sleep Initiation and Maintenance Disorders/drug therapy , Reishi/chemistry
2.
Phytomedicine ; 114: 154802, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37054486

ABSTRACT

BACKGROUND: A tri-herb formulation comprising Ganoderma (the dried fruiting body of Ganoderma lucidum), Puerariae Thomsonii Radix (the dried root of Pueraria thomsonii) and Hoveniae Semen (the dried mature seed of Hovenia acerba) -GPH for short- has been using for treating liver injury; however, the pharmacological basis of this application of GPH is unknown. This study aimed to investigate the liver protective effects and mechanisms of action of an ethanolic extract of GPH (GPHE) in mice. METHODS: To control the quality of GPHE, the contents of ganodermanontriol, puerarin and kaempferol in the extract were quantified by ultra-performance liquid chromatography. An ethanol (6 ml/kg, i.g.)-induced liver injury ICR mouse model was employed to investigate the hepatoprotective effects of GPHE. RNA-sequencing analysis and bioassays were performed to reveal the mechanisms of action of GPHE. RESULTS: The contents of ganodermanontriol, puerarin and kaempferol in GPHE were 0.0632%, 3.627% and 0.0149%, respectively. Daily i.g. administration of 0.25, 0.5 or 1 g/kg of GPHE for 15 consecutive days suppressed ethanol (6 ml/kg, i.g., at day 15)-induced upregulation of serum AST and ALT levels and improved histological conditions in mouse livers, indicating that GPHE protects mice from ethanol-induced liver injury. Mechanistically, GPHE downregulated the mRNA level of Dusp1 (encoding MKP1 protein, an inhibitor of the mitogen-activated protein kinases JNK, p38 and ERK), and upregulated expression and phosphorylation of JNK, p38 and ERK, which are involved in cell survival in mouse liver tissues. Also, GPHE increased PCNA (a cell proliferation marker) expression and reduced TUNEL-positive (apoptotic) cells in mouse livers. CONCLUSION: GPHE protects against ethanol-induced liver injury, and this effect of GPHE is associated with regulation of the MKP1/MAPK pathway. This study provides pharmacological justifications for the use of GPH in treating liver injury, and suggests that GPHE has potential to be developed into a modern medication for managing liver injury.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Ethanol , Mice , Animals , Ethanol/pharmacology , Kaempferols/pharmacology , Chemical and Drug Induced Liver Injury, Chronic/pathology , Mice, Inbred ICR , Liver , Mitogen-Activated Protein Kinase Phosphatases/pharmacology , p38 Mitogen-Activated Protein Kinases
SELECTION OF CITATIONS
SEARCH DETAIL