Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Ultrason Sonochem ; 101: 106696, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37988957

ABSTRACT

To improve the protein dissolution rate and the quality of fresh Lycium barbarum pulp (LBP), we optimized the slit dual-frequency ultrasound-assisted pulping process, explored the dissolution kinetics of Lycium barbarum protein (LBPr), and established a near-infrared spectroscopy in situ real-time monitoring model for LBPr dissolution through spectral information analysis and chemometric methods. The results showed that under optimal conditions (dual-frequency 28-33 kHz, 300 W, 31 min, 40 °C, interval ratio 5:2 s/s), ultrasonic treatment not only significantly increased LBPr dissolution rate (increased by 71.48 %, p < 0.05), improved other nutrient contents and color, but also reduced the protein particle size, changed the amino acid composition ratio and protein structure, and increased the surface hydrophobicity, zeta potential, and free sulfhydryl content of protein, as well as the antioxidant activity of LBPr. In addition, ultrasonication significantly improved the functional properties of the protein, including thermal stability, foaming, emulsification and oil absorption capacity. Furthermore, the real-time monitoring model of the dissolution process was able to quantitatively predict the dissolution rate of LBPr with good calibration and prediction performance (Rc = 0.9835, RMSECV = 2.174, Rp = 0.9841, RMSEP = 1.206). These findings indicated that dual-frequency ultrasound has great potential to improve the quality of LBP and may provide a theoretical basis for the establishment of an intelligent control system in the industrialized production of LBP and the functional development of LBPr.


Subject(s)
Drugs, Chinese Herbal , Lycium , Antioxidants/chemistry , Lycium/chemistry , Lycium/metabolism , Drugs, Chinese Herbal/metabolism , Drugs, Chinese Herbal/pharmacology
2.
Ultrason Sonochem ; 98: 106509, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37406542

ABSTRACT

In this study, the slit dual-frequency ultrasound-assisted pulping of fresh Lycium barbarum fruit was optimized to improve the dissolution of polysaccharides. The microscopic mechanism of polysaccharide dissolution was explored through establishing polysaccharides dissolution kinetics model and visualizing the multi-physical fields during ultrasonic process, and an in situ real-time monitoring model was established by the relationship between the chemical value and spectral information collected by near-infrared spectroscopy. The results showed that, under optimal conditions, treatment with ultrasound (28-33 kHz, 250 W, 30 min) not only significantly promoted the dissolution rate of polysaccharides in Lycium barbarum pulp (LBPPs, increased by 43.64 %, p < 0.01), reduced its molecular weight, but also improved the arabinose molar ratio, the uniformity of polysaccharide particles, and the antioxidant activity of LBPPs. Correlation analysis indicated that ultrasonic treatment is closely related to LBPPs content, particle size and scavenging capacity against superoxide anion radicals (ptotal sugar content < 0.01, pparticle size < 0.05 and psuperoxide anion scavenging < 0.05). Moreover, the in situ real-time monitoring model for the pulping process could quantitatively predict LBPPs dissolution rate and its superoxide anion radical scavenging capacity with good calibration and prediction performance (Rc = 0.9841, RMSECV = 0.0873, Rp = 0.9772, RMSEP = 0.0530; Rc = 0.9874, RMSECV = 0.1246, Rp = 0.9868, RMSEP = 0.0665). These results indicated that slit dual-frequency ultrasound has great potential in improving the quality of Lycium barbarum pulp, which may provide theoretical support for the industrial development of intelligent systems for polysaccharides preparation.


Subject(s)
Drugs, Chinese Herbal , Lycium , Lycium/chemistry , Superoxides , Fruit/chemistry , Solubility , Polysaccharides/chemistry , Drugs, Chinese Herbal/analysis
3.
Molecules ; 27(14)2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35889295

ABSTRACT

Wolfberry (Lycium barbarum L.) is a nutritious and medicinal fruit, and deeply processed products of wolfberry needs to be improved. In this study, nutrition, bioactive compounds, and hepaprotective activity were explored in wolfberry vinegar (WFV). The contents of nutrients including total sugar and protein in WFV samples were 2.46 and 0.27 g/100 mL, respectively. Total phenolic and flavonoid contents in WFV were 2.42 mg GAE/mL and 1.67 mg RE/mL, respectively. p-Hydroxybenzoic acid and m-hydroxycinnamic acid were the main polyphenols in WFV. The antioxidant activity of WFV were 20.176 mM Trolox/L (ABTS), 8.614 mM Trolox/L (FRAP), and 26.736 mM Trolox/L (DPPH), respectively. In addition, WFV treatment effectively alleviated liver injury by improving histopathological changes and reducing liver biochemical indexes in CCl4-treated mice. WFV alleviated oxidative damage by inhibiting oxidative levels and increasing antioxidant levels. These results suggest that WFV can be utilized as a functional food to prevent oxidative liver injury.


Subject(s)
Lycium , Acetic Acid/analysis , Animals , Antioxidants/analysis , Antioxidants/pharmacology , Fruit/chemistry , Lycium/chemistry , Mice , Plant Extracts/chemistry
4.
Food Res Int ; 140: 110064, 2021 02.
Article in English | MEDLINE | ID: mdl-33648287

ABSTRACT

Zhenjiang aromatic vinegar (ZAV), a traditional fermented food in China, is rich in polyphenols with health-beneficial effects. In this study, vinegar extract ameliorated ethanol-induced liver injury by reducing the levels of oxidative stress biomarkers. In addition, vinegar extract regulated gut microbiota composition and immune factors, and improved antimicrobial peptides (Reg3b and Reg3g) and intestinal homeostasis in ethanol-treated mice. Vinegar extract suppressed lipopolysaccharide (LPS)-mediated inflammatory response in the liver and gut of ethanol-treated mice. Moreover, Akkermansia, Lachnospiraceae_NK4A136_group and Bacteroidetes showed a positive correlation with intestinal immune factors and antimicrobial peptides, and a negative correlation with parameters of oxidative stress and inflammation. In contrast, Firmicutes, Proteobacteria, Bilophila and Butyricimonas showed the opposite correlation with these parameters. Our study provides a new sight into vinegar extract for the prevention of ethanol-induced liver damage via modulation of gut-liver axis.


Subject(s)
Gastrointestinal Microbiome , Polyphenols , Acetic Acid , Animals , China , Ethanol , Inflammation/chemically induced , Inflammation/prevention & control , Mice , Plant Extracts/pharmacology , Polyphenols/analysis , Polyphenols/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL