Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
J Control Release ; 357: 84-93, 2023 05.
Article in English | MEDLINE | ID: mdl-36948420

ABSTRACT

Cyclic dinucleotides (CDNs), as one type of Stimulator of Interferon Genes (STING) pathway agonist, have shown promising results for eliciting immune responses against cancer and viral infection. However, the suboptimal drug-like properties of conventional CDNs, including their short in vivo half-life and poor cellular permeability, compromise their therapeutic efficacy. In this study, we have developed a manganese-silica nanoplatform (MnOx@HMSN) that enhances the adjuvant effects of CDN by achieving synergy with Mn2+ for vaccination against cancer and SARS-CoV-2. MnOx@HMSN with large mesopores were efficiently co-loaded with CDN and peptide/protein antigens. MnOx@HMSN(CDA) amplified the activation of the STING pathway and enhanced the production of type-I interferons and other proinflammatory cytokines from dendritic cells. MnOx@HMSN(CDA) carrying cancer neoantigens elicited robust antitumor T-cell immunity with therapeutic efficacy in two different murine tumor models. Furthermore, MnOx@HMSN(CDA) loaded with SARS-CoV-2 antigen achieved strong and durable (up to one year) humoral immune responses with neutralizing capability. These results demonstrate that MnOx@HMSN(CDA) is a versatile nanoplatform for vaccine applications.


Subject(s)
COVID-19 , Hereditary Sensory and Motor Neuropathy , Nanoparticles , Vaccines , Humans , Animals , Mice , Manganese , Silicon Dioxide , COVID-19/prevention & control , SARS-CoV-2 , Immunotherapy
2.
Glob Chang Biol ; 24(8): 3452-3461, 2018 08.
Article in English | MEDLINE | ID: mdl-29645398

ABSTRACT

Long-term elevated nitrogen (N) input from anthropogenic sources may cause soil acidification and decrease crop yield, yet the response of the belowground microbial community to long-term N input alone or in combination with phosphorus (P) and potassium (K) is poorly understood. We explored the effect of long-term N and NPK fertilization on soil bacterial diversity and community composition using meta-analysis of a global dataset. Nitrogen fertilization decreased soil pH, and increased soil organic carbon (C) and available N contents. Bacterial taxonomic diversity was decreased by N fertilization alone, but was increased by NPK fertilization. The effect of N fertilization on bacterial diversity varied with soil texture and water management, but was independent of crop type or N application rate. Changes in bacterial diversity were positively related to both soil pH and organic C content under N fertilization alone, but only to soil organic C under NPK fertilization. Microbial biomass C decreased with decreasing bacterial diversity under long-term N fertilization. Nitrogen fertilization increased the relative abundance of Proteobacteria and Actinobacteria, but reduced the abundance of Acidobacteria, consistent with the general life history strategy theory for bacteria. The positive correlation between N application rate and the relative abundance of Actinobacteria indicates that increased N availability favored the growth of Actinobacteria. This first global analysis of long-term N and NPK fertilization that differentially affects bacterial diversity and community composition provides a reference for nutrient management strategies for maintaining belowground microbial diversity in agro-ecosystems worldwide.


Subject(s)
Agriculture , Ecosystem , Fertilizers/analysis , Microbiota , Soil Microbiology , Actinobacteria , Nitrogen/analysis , Phosphorus/analysis , Potassium/analysis , Proteobacteria
3.
Nat Commun ; 6: 6299, 2015 Feb 24.
Article in English | MEDLINE | ID: mdl-25708922

ABSTRACT

Optical frequency combs are a revolutionary light source for high-precision spectroscopy because of their narrow linewidths and precise frequency spacing. Generation of such combs in the mid-infrared spectral region (2-20 µm) is important for molecular gas detection owing to the presence of a large number of absorption lines in this wavelength regime. Microresonator-based frequency comb sources can provide a compact and robust platform for comb generation that can operate with relatively low optical powers. However, material and dispersion engineering limitations have prevented the realization of an on-chip integrated mid-infrared microresonator comb source. Here we demonstrate a complementary metal-oxide-semiconductor compatible platform for on-chip comb generation using silicon microresonators, and realize a broadband frequency comb spanning from 2.1 to 3.5 µm. This platform is compact and robust and offers the potential to be versatile for use outside the laboratory environment for applications such as real-time monitoring of atmospheric gas conditions.

SELECTION OF CITATIONS
SEARCH DETAIL